Little is known about homocysteine metabolism in intestine. To address this question, we investigated homocysteine metabolism under conditions of folate adequacy and folate deprivation in the Caco-2 cell line, a model of human intestinal mucosal cells. Caco-2 cells were cultured in media enriched with [3-(13)C]serine and [U-(13)C(5)]methionine tracers, and enrichments of intracellular free amino acid pools of these amino acids as well as homocysteine, cystathionine, and cysteine were measured by using gas chromatography/mass spectrometry. Homocysteine transsulfuration plus folate-dependent and total remethylation were quantified from these amino acid enrichments. Homocysteine remethylation accounted for 19% of the intracellular free methionine pool in cells cultured with supplemental folate, and nearly all one-carbon units used for remethylation originated from the three carbon of serine via folate-dependent remethylation. Labeling of cystathionine and cysteine indicated the presence of a complete transsulfuration pathway in Caco-2 cells, and this pathway produced 13% of the intracellular free cysteine pool. Appearance of labeled homocysteine and cystathionine in culture medium suggests export of these metabolites from intestinal cells. Remethylation was reduced by one-third in folate-restricted cell cultures (P < 0.001), and only approximately 50% of the one-carbon units used for remethylation originated from the three carbon of serine under these conditions. In conclusion, the three carbon of serine is the primary source of one-carbon units used for homocysteine remethylation in folate-supplemented Caco-2 cell cultures. Remethylation is reduced as a result of folate restriction in this mucosal cell model, and one-carbon sources other than the three carbon of serine contribute to remethylation under this condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.00454.2003 | DOI Listing |
Mikrochim Acta
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Rollins School of Public Health, Emory U, Atlanta, Ga 30322, United States.
Repeated measurements of household air pollution may provide better estimates of average exposure but can add to costs and participant burden. In a randomized trial of gas versus biomass cookstoves in four countries, we took supplemental personal 24-h measurements on a 10% subsample for mothers and infants, interspersed between protocol samples. Mothers had up to five postrandomization protocol measurements over 16 months, while infants had three measurements over one year.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
China Three Gorges Corporation, Beijing 100038, China.
With the rapid decline in the levelized cost, offshore wind power offers a new option for the clean energy transition of the power sector in China's coastal areas. Here, we develop a power system capacity expansion and operation optimization model to simulate the penetration of offshore wind power in China and quantify the associated health effects. We find that offshore wind power has great potential in mitigating the negative impacts of existing coal-fired power emissions.
View Article and Find Full Text PDFNoncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Systems Biology Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
DNA holds immense potential as an emerging data storage medium. However, the recovery of information in DNA storage systems faces challenges posed by various errors, including IDS errors, strand breaks, and rearrangements, inevitably introduced during synthesis, amplification, sequencing, and storage processes. Sequence reconstruction, crucial for decoding, involves inferring the DNA reference from a cluster of erroneous copies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!