Urotensin II (UII) is a vasoactive peptide that has recently emerged as a likely contributor to cardiovascular physiology and pathology. Acute infusion of UII into nonhuman primates results in circulatory collapse and death; however, the exact cause of death is not well understood. This study was undertaken to elucidate the mechanism underlying the fatal cardiovascular event on UII application in vivo in nonhuman primates. To this end, cynomolgus monkeys (n = 4) were anesthetized and tracheal intubation was performed. One internal jugular vein was cannulated for administration of drugs, and one femoral artery for recording of blood pressure and heart rate using a transonic pressure transducer. Cardiac parameters were not significantly changed after administration of 0.003 nmol/kg human UII. A bolus of human UII (0.03 nmol/kg) caused a decrease of heart rate (HR) (13%), mean blood pressure (MBP) (18%), and first-order derivative of left ventricular pressure (dP/dt) (11%). Carotid and coronary blood flow were reduced by 9% and 7%, respectively; 0.3 nmol/kg of human UII resulted in a further reduction of HR (50.3%), MBP (65%), dP/dt (45%), carotid (38%), and coronary blood flow (30%), ultimately leading to cardiovascular breakdown and death. Pulmonary pressure, however, was increased by 30%. Plasma histamine levels were found to be unaffected by administration of UII. Our results indicate that systemic administration of human UII has negative inotropic and chronotropic effects and reduces total peripheral resistance ultimately leading to severe myocardial depression, pulmonary hypertension, and fatal circulation collapse in nonhuman primates. We suggest that successful design of UII antagonists might offer a new therapeutic principle in treating cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00406.2003 | DOI Listing |
PLoS One
December 2024
Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
Renal tubular epithelial cell injury is an important manifestation of chronic kidney disease (CKD). This study aims to explore the mechanism of astragaloside IV (AS-IV) in the treatment of UII-mediated renal tubular epithelial cell injury by integrating network pharmacology and experimental validation. BATMAN, SwissTarget-Prediction and ETCM data bases were used to screen the target proteins of AS-IV.
View Article and Find Full Text PDFMedicina (Kaunas)
October 2024
Department of Physiology, Medical Specialization Training Center (TUSMER), Ankara 06420, Turkey.
Small airway fibrosis plays a critical role in the progression of chronic obstructive pulmonary disease (COPD). Previous research has suggested that Urotensin-II (U-II) and transforming growth factor-β (TGF-β) may contribute to pathological fibrosis in various organs, including the cardiovascular system, lungs, and liver. However, their specific relationship with airway fibrosis in COPD has not yet been thoroughly investigated.
View Article and Find Full Text PDFNat Med
November 2024
Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
The widespread implementation of low-dose computed tomography (LDCT) in lung cancer screening has led to the increasing detection of pulmonary nodules. However, precisely evaluating the malignancy risk of pulmonary nodules remains a formidable challenge. Here we propose a triage-driven Chinese Lung Nodules Reporting and Data System (C-Lung-RADS) utilizing a medical checkup cohort of 45,064 cases.
View Article and Find Full Text PDFBMC Med Imaging
September 2024
Department of Radiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, China.
Background: This study aims to utilize the deep learning method of VB-Net to locate and segment the trigeminal nerve, and employ radiomics methods to distinguish between CTN patients and healthy individuals.
Methods: A total of 165 CTN patients and 175 healthy controls, matched for gender and age, were recruited. All subjects underwent magnetic resonance scans.
Proc Natl Acad Sci U S A
July 2024
Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.
Pancreatic ductal adenocarcinoma (PDAC) represents a challenge in oncology, with limited treatment options for advanced-stage patients. Chimeric antigen receptor T cell (CAR T) therapy targeting mesothelin (MSLN) shows promise, but challenges such as the hostile immunosuppressive tumor microenvironment (TME) hinder its efficacy. This study explores the synergistic potential of combining proton radiation therapy (RT) with MSLN-targeting CAR T therapy in a syngeneic PDAC model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!