Lead arsenate (PbHAsO4) was used as an insecticide in Washington fruit orchards from 1905 to 1947. We examined exposure potential for children living in an agricultural community with historic PbHAsO4 use. Soil and housedust samples were collected from 58 residences. Families were asked about land use history, age of home, and remodeling activities. Median concentrations of arsenic were higher in housedust than in soil (9.0 and 4.2 microg/g, respectively; P=0.05), as were lead concentrations (129 and 46 microg/g, respectively; P=0.0001). Significant associations were observed between indoor and outdoor levels of each metal, indicating track-in as an important exposure pathway. Homes on or near land use for pear or apple production between 1905 and 1947 had significantly higher soil (P=0.005) and housedust (P=0.004) lead, and soil arsenic (P=0.04) than did the other homes. Homes more than 30 years old had significantly higher soil and housedust lead than did newer homes (P=0.01). Homes remodeled within the past two years had significantly higher soil (P=0.01) and housedust (P=0.04) lead. Child doses extrapolated from these data indicate that 36% of homes had soil or dust arsenic levels above the minimum risk level estimated by the Agency for Toxic Substances and Disease Registry. None of the measured lead levels exceeded current US Environmental Protection Agency guidelines. Public health education programs focused on residential hygiene would be of value in areas of historic PbHAsO4 use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0013-9351(03)00064-1 | DOI Listing |
Plant Biotechnol J
January 2025
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.
Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, NSW 2795, Australia.
Soil colour is a key indicator of soil health and the associated properties. In agriculture, soil colour provides farmers and advises with a visual guide to interpret soil functions and performance. Munsell colour charts have been used to determine soil colour for many years, but the process is fallible, as it depends on the user's perception.
View Article and Find Full Text PDFFoods
December 2024
Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain.
The objective of the present work was to examine the effect of incorporating spirulina powder (SP) in -type sausages made exclusively with camel meat, as well as to evaluate its physicochemical, microbiological, and sensory quality attributes and its prebiotic potential. The final purpose was to offer an innovative meat product to increase camel meat consumption. Several innovative fresh sausage formulations were developed using SP (00, 100, 250, and 500 mg/kg) and stored under vacuum conditions with refrigeration at 1 ± 1 °C for 35 days.
View Article and Find Full Text PDFFoods
December 2024
Department of Chemical Engineering, Faculty of Chemistry, Universidad de Sevilla, 41012 Seville, Spain.
Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of macroalgae powder (ULP) as an active additive in crab () chitosan-based films for natural food packaging. Films with ULP concentrations of 0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, from encoding an exporter of Ni and cobalt was overexpressed constitutively in , and the performance of transgenic plants was assayed under Ni stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!