Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane.

Biosens Bioelectron

Department of Chemistry, Institute of Analytical Science, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China.

Published: December 2003

A novel amperometric glucose sensor was constructed by immobilizing glucose oxidase (GOD) in a titania sol-gel film, which was prepared with a vapor deposition method. The sol-gel film was uniform, porous and showed a very low mass transport barrier and a regular dense distribution of GOD. Titania sol-gel matrix retained the native structure and activity of entrapped enzyme and prevented the cracking of conventional sol-gel glasses and the leaking of enzyme out of the film. With ferrocenium as a mediator the glucose sensor exhibited a fast response, a wide linear range from 0.07 to 15 mM. It showed a good accuracy and high sensitivity as 7.2 microA cm(-2) mM(-1). The general interferences coexisted in blood except ascorbic acid did not affect glucose determination, and coating Nafion film on the sol-gel film could eliminate the interference from ascorbic acid. The serum glucose determination results obtained with a flow injection analysis (FIA) system showed an acceptable accuracy, a good reproducibility and stability and indicated the sensor could be used in FIA determination of glucose. The vapor deposition method could fabricate glucose sensor in batches with a very small amount of enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0956-5663(03)00199-4DOI Listing

Publication Analysis

Top Keywords

glucose sensor
16
titania sol-gel
12
sol-gel film
12
glucose
10
flow injection
8
injection analysis
8
serum glucose
8
glucose oxidase
8
god titania
8
vapor deposition
8

Similar Publications

Glucose Sensor Design Based on Monte Carlo Simulation.

Biosensors (Basel)

January 2025

Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China.

Continuous glucose monitoring based on the minimally invasive implantation of glucose sensor is characterized by high accuracy and good stability. At present, glucose concentration monitoring based on fluorescent glucose capsule sensor is a new development trend. In this paper, we design a fluorescent glucose capsule sensor with a design optimization study.

View Article and Find Full Text PDF

Electrochemical Glucose Sensor Based on Dual Redox Mediators.

Biosensors (Basel)

December 2024

Cofoe Medical Technology Co., Ltd., No. 816 Zhenghua Road, Changsha 410021, China.

Electrochemical glucose sensor holds significant promise for the monitoring of blood glucose levels in diabetic patients. In this study, we proposed a novel electrochemical glucose sensor based on 1,10-Phenanthroline-5,6-dione (PD)/Ru(III) as a dual redox mediator. The synergistic effect of PD and Ru(III) was utilized to efficiently facilitate the electron transfer between the enzyme-active center and the electrode.

View Article and Find Full Text PDF

Nutritional intake is closely linked to gonadal development, although the mechanisms by which food intake affects gonadal development are not fully understood. Cholecystokinin (CCK) is a satiety neuropeptide derived from the hypothalamus, and the present study observed that hypothalamic CCK expression is significantly influenced by food intake, which is mediated through blood glucose levels. Interestingly, CCK and its receptors were observed to exhibit a high expression in the hypothalamus-pituitary-gonad (HPG) axis of grass carp (), suggesting that CCK is potentially involved in regulating fish reproduction through the HPG axis.

View Article and Find Full Text PDF

Background: Continuous glucose monitoring (CGM) improves glycemic control and quality of life. Data on glycemic indices and fear of hypoglycemia (FoH) in newly diagnosed T1DM patients are limited.

Aim: To assess the impact of initiating intermittently scanned CGM (isCGM) within 1-6 months of diagnosis on glycemic control and FoH in adults with T1DM.

View Article and Find Full Text PDF

Intrinsic fluorescence hydrogels for ON/OFF screening of antidiabetic drugs: assessing α-glucosidase inhibition by acarbose.

J Mater Chem B

January 2025

Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.

Diabetes remains one of the most prevalent chronic diseases globally, significantly impacting mortality ratetables. The development of effective treatments for controlling glucose level in blood is critical to improve the quality of life of patients with diabetes. In this sense, smart optical sensors using hydrogels, responsive to external stimuli, have emerged as a revolutionary approach to diabetes care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!