Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this work was to determine bone loading conditions that, when applied to a finite element model, would best reproduce the in vivo strain field as measured by surface-mounted strain rosettes. The present study adopts the basic mathematical approach to load reconstruction introduced by Weinans and Blankevoort (J. Biomech. 28 (1995) 739) who determined the relationship between applied loads and bone strain distribution using ex vivo calibration testing. Our method eliminates the need for subsequent ex vivo calibration tests by instead substituting a computational calibration procedure. This first application of the method is with in vivo strains on the canine forelimb during gait (Coleman et al., J. Biomech. 35 (2002) 1677), but with further refinements the method could be used to reconstruct the in vivo loading conditions in living subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9290(03)00215-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!