Electrical properties affecting discharge of units of the mid and posterolateral thalamus of conscious cats.

Neuroscience

Mental Retardation Research Center, Brain Research Institute, UCLA Medical Center, Room 58-232, 760 Westwood Plaza, Los Angeles, CA 90024, USA.

Published: March 2004

Discharge properties in response to intracellularly applied, rectangular currents were measured in units of the mid (lateralis dorsalis and centrolateral nuclei) and posterolateral (lateralis posterior and pulvinar nuclei) thalamus of conscious cats. A separate aim was to determine if neuronal excitability changed in association with changes in stimulus-evoked activity after the animals were trained to discriminate between two acoustic stimuli when performing a conditioned motor response. Low threshold spike (l.t.s.) discharges were observed in three of 272 cells given 1 nA intracellular, hyperpolarizing current pulses of 40 ms duration. This finding supports the view that thalamic neurons of conscious animals operate mainly in the relay as opposed to the oscillatory mode. Application of larger and longer hyperpolarizing currents in the cells produced rebound l.t.s. discharges, supporting the expectation that most thalamic neurons are capable of producing this type of discharge. Decrements of spike afterhyperpolarizations (AHP) and broadening of spike bases upon repeated discharge also were observed in each area of the thalamus studied. After conditioning, changes were found in the posterolateral thalamus (but not in the mid-thalamus) in the proportions of cells with spontaneous, rapid (>/=50 Hz), repetitive, discharges (RRD) and rapid, sustained discharges at rates >/=100 Hz during application of depolarizing current (RSD). In the posterolateral thalamus the percentage of units responding to 1 nA depolarization with RSD fell from 71% before conditioning to 45% after conditioning. The percentage of cells with RRD decreased from 69% to 46%. The changes were accompanied by a 3 mV hyperpolarization of the membrane potentials of the cells and a decrease in baseline activity. After conditioning, increases in excitability were found in cells of the mid thalamus that responded selectively to the click conditioned stimulus (CS) that elicited the conditioned response, and decreases in excitability were found in cells of the posterolateral thalamus that responded to the discriminative acoustic stimulus (DS) to which the animals were trained not to respond. An earlier study showed a potentiation of discharge in response to the CS in units of the midthalamus after similar conditioning and a reduction of the proportion of DS responsive units and peak discharge to the DS in units of the posterolateral thalamus. We conclude that the discharge properties of units of the mid and posterolateral thalamus can change to support discrimination between acoustic stimuli of different functional significance after conditioning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2003.08.011DOI Listing

Publication Analysis

Top Keywords

posterolateral thalamus
24
units mid
12
thalamus
9
discharge units
8
mid posterolateral
8
thalamus conscious
8
conscious cats
8
discharge properties
8
animals trained
8
acoustic stimuli
8

Similar Publications

Central projections of nociceptive input originating from the low back and limb muscle in rats.

Sci Rep

January 2025

Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Japan.

Since clinical features of chronic muscle pain originating from the low back and limbs are different (higher prevalence and broader/duller sensation of low back muscle pain than limb muscle pain), spinal and/or supraspinal projection of nociceptive information could differ between the two muscles. We tested this hypothesis using c-Fos immunohistochemistry combined with retrograde-labeling of dorsal horn (DH) neurons projecting to ventrolateral periaqueductal grey (vlPAG) or ventral posterolateral nucleus of the thalamus (VPL) by fluorogold (FG) injections into the vlPAG or VPL. C-Fos expression in the DH was induced by injecting 5% formalin into the multifidus (MF, low back) or gastrocnemius-soleus (GS, limb) muscle.

View Article and Find Full Text PDF

Introduction: CLN8-Batten disease is a rare neurodegenerative disorder characterized phenotypically by progressive deterioration of motor and cognitive abilities, visual symptoms, epileptic seizures, and premature death. Mutations in CLN8 result in characteristic Batten disease symptoms and brain-wide pathology including accumulation of lysosomal storage material, gliosis, and neurodegeneration. Recent investigations of other subtypes of Batten disease (CLN1, CLN3, CLN6) have emphasized the influence of biological sex on disease and treatment outcomes; however, little is known about sex differences in the CLN8 subtype.

View Article and Find Full Text PDF

Excitatory neuron-prone prion propagation and excitatory neuronal loss in prion-infected mice.

Front Mol Neurosci

December 2024

Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.

The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.

View Article and Find Full Text PDF

Pain is the most common non-motor manifestation of Parkinson's disease (PD), affecting the quality of life for patients. Nav1.6 is the most abundant subtype of voltage-gated sodium channels (VGSCs) in the brain of adult mammals.

View Article and Find Full Text PDF

Objective: Spinal cord stimulation (SCS) is an invasive treatment option for patients suffering from chronic low-back pain (cLBP). It is an effective treatment that has been shown to reduce pain and increase the quality of life in patients. However, the activation of pain processing regions of cLBP patients receiving SCS has not been assessed using objective, quantitative functional imaging techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!