Recently, an Escherichia coli CM2555 strain was described as sensitive to chloramphenicol when expressing the chloramphenicol resistance gene (cat) from a multicopy plasmid. This sensitivity was linked to dysfunction of the acrA gene, which encodes a component of the AcrAB-TolC multidrug efflux pump. Preliminary data indicate that the sensitivity phenotype might be due to a decline in intracellular acetyl coenzyme A concentration accompanying the reaction catalyzed by chloramphenicol acetyltransferase, the cat-encoded resistance protein. Here, we demonstrate that the acrA dysfunction is the factor impairing the intracellular acetyl coenzyme A levels in the cat-expressing CM2555 strain. This effect might be alleviated by the interplay of proteins constituting two homologous efflux systems: AcrAB-TolC and AcrEF-TolC. However, our results show also that this is a genetic background-specific phenomenon, as the decrease in acetyl coenzyme A level is not evident in a cat-bearing DeltaacrAB derivative of the commonly used strain C600.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-003-0592-xDOI Listing

Publication Analysis

Top Keywords

acetyl coenzyme
16
intracellular acetyl
12
coenzyme levels
8
escherichia coli
8
coli cm2555
8
expressing chloramphenicol
8
chloramphenicol acetyltransferase
8
cm2555 strain
8
acrab locus
4
locus involved
4

Similar Publications

Sulforaphane acutely activates multiple starvation response pathways.

Front Nutr

January 2025

Aging and Metabolism Research Program, Oklahoma City, OK, United States.

Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.

View Article and Find Full Text PDF

Pantothenate (Pan), or vitamin B5, is essential for the synthesis of co-enzyme A (CoA), acetyl-CoA, and numerous downstream physiological processes. We previously demonstrated that Pan is not only essential for mosquito survival, but also for the development of malaria parasites within the mosquito, suggesting that targeting Pan and CoA biosynthesis may be a novel approach for malaria control. However, little is known about how Pan is acquired and mobilized within the mosquito.

View Article and Find Full Text PDF

[Metabolic engineering of for the biosynthesis of O-acetyl-L-homoserine].

Sheng Wu Gong Cheng Xue Bao

January 2025

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

O-acetyl-L-homoserine (OAH) is a promising platform compound for the production of L-methionine and other valuable compounds, while its low yield and low conversion rate limit the industrial application. To solve these problems, we constructed a strain for high OAH production with the previously constructed L-homoserine producer HS33 as the chassis by systematic metabolic engineering. Firstly, PEP accumulation, pyruvate utilization, and OAH synthesis pathway (overexpressing , , and ) were enhanced to obtain an initial strain accumulating 13.

View Article and Find Full Text PDF

U32 is an industrial strain capable of producing therapeutically useful rifamycin SV. In early days of fermentation studies, nitrate was found to increase the yield of rifamycin along with globally, affecting both carbon and nitrogen metabolism in favor of antibiotic biosynthesis; thus, the (NSE) hypothesis was proposed. Although GlnR is likely the master regulator of the pleotropic effect of NSE, the global metabolism affected by NSE has never been systematically examined.

View Article and Find Full Text PDF

Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation.

Sci Adv

January 2025

Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!