A proportion of neural tube defects (NTDs) can be prevented by maternal folic acid supplementation, although some cases are unresponsive. The curly tail mutant mouse provides a model of folate-resistant NTDs, in which defects can be prevented by inositol therapy in early pregnancy. Hence, inositol represents a possible novel adjunct therapy to prevent human NTDs. The present study investigated the molecular mechanism by which inositol prevents mouse NTDs. Activation of protein kinase C (PKC) is known to be essential, and we examined neurulation-stage embryos for PKC expression and applied PKC inhibitors to curly tail embryos developing in culture. Although all known PKC isoforms were detected in the closing neural tube, use of chemical PKC inhibitors identified a particular requirement for 'conventional' PKC isoforms. Peptide inhibitors offer selective inhibition of individual PKCs, and we demonstrated isoform-specific inhibition of PKC in embryonic cell cultures. Application of peptide inhibitors to neurulation-stage embryos revealed an absolute dependence on the activity of PKCbetaI and gamma for prevention of NTDs by inositol, and partial dependence on PKCzeta, whereas other PKCs (alpha, betaII delta, and epsilon) were dispensable. To investigate the cellular action of inositol and PKCs in NTD prevention, we examined cell proliferation in curly tail embryos. Defective proliferation of hindgut cells is a key component of the pathogenic sequence leading to NTDs in curly tail. Hindgut cell proliferation was stimulated specifically by inositol, an effect that required activation of PKCbetaI. Our findings reveal an essential role of specific PKC isoforms in mediating the prevention of mouse NTDs by inositol.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddh003DOI Listing

Publication Analysis

Top Keywords

curly tail
16
neural tube
12
pkc isoforms
12
protein kinase
8
tube defects
8
inositol
8
mouse ntds
8
pkc
8
neurulation-stage embryos
8
pkc inhibitors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!