CaTiO(3) is a strong candidate to form at the interface between hydroxylapatite (HA) and titanium implants during many coating procedures. However, few studies have compared the cytocompatibility properties of CaTiO(3) to HA pertinent for bone-cell function. For this reason, the objective of the present in vitro study was to determine the ability of bone-forming cells (osteoblasts) to adhere on titanium coated with HA that resulted in the formation of CaTiO(3). To accomplish the formation of CaTiO(3), titanium was coated on HA discs and annealed either under air or a N(2)+H(2) environment. Materials were characterized by X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), and atomic force microscopy (AFM). These characterization techniques demonstrated the formation of a nanometer rough CaTiO(3) layer as a consequence of interactions between HA and titanium during coating conditions. Results from cytocompatibility tests revealed increased osteoblast adhesion on materials that contained CaTiO(3) compared to both pure HA and uncoated titanium. The greatest osteoblast adhesion was observed on titanium-coated HA annealed under air conditions. Because adhesion is a crucial prerequisite to subsequent functions of osteoblasts (such as the deposition of calcium containing mineral), the present in vitro results imply that orthopedic coatings that form CaTiO(3) could increase osseointegration with juxtaposed bone needed for increased implant efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.10160DOI Listing

Publication Analysis

Top Keywords

osteoblast adhesion
12
increased osteoblast
8
catio3
8
titanium coated
8
formation catio3
8
annealed air
8
titanium
5
adhesion
4
adhesion titanium-coated
4
titanium-coated hydroxylapatite
4

Similar Publications

The advancement in the arena of bone tissue engineering persuades us to develop novel nanocomposite scaffolds in order to improve antibacterial, osteogenic, and angiogenic properties that show resemblance to natural bone extracellular matrix. Here, we focused on the development of novel zinc-doped hydroxyapatite (ZnHAP) nanoparticles (1, 2 and 3 wt%; size: 50-60 nm) incorporated chitosan-gelatin nanocomposite scaffold, with an interconnected porous structure. The addition of ZnHAP nanoparticles decreases the pore size (~30 µm) of the chitosan gelatin scaffold.

View Article and Find Full Text PDF

A mechanosensitive circuit of FAK, ROCK, and ERK controls biomineral growth and morphology in the sea urchin embryo.

Proc Natl Acad Sci U S A

January 2025

Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.

Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is a novel biocompatible polymeric biomaterial with a wide range of biomedical uses, like tissue engineering (TE) scaffolds, wound dressings, and drug delivery. Although BC lacks good cell adhesion due to limited functionality, its tunable surface chemistry still holds promise. Here, hydroxyapatite (HA) was incorporated into a citrate-modified BC (MBC) using the biomimetic synthesis in simulated body fluid (SBF).

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Multi-Functional Bio-HJzyme Engineered Polyetheretherketone Implant with Cascade-Amplification Therapeutic Capabilities Toward Intractable Implant-Associated Infections.

Small

December 2024

State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Center for Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.

Intractable implant-associated infections (IAIs) are the primary cause of prosthetic implant failure, particularly in the context of diabetes mellitus. There is an urgent need to design and construct versatile engineered implants integrated with cascade amplification therapeutic modality to significantly improve the treatment of diabetic IAIs. To address this issue, a multi-functional MXene/AgPO@glucose oxidase bio-heterojunction enzyme (M/A@GOx bio-HJzyme) coating is developed, which is decorated with an inert sulfonated polyetheretherketone implant (SP-M/A@G) via hydrothermal treatment and layered deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!