Bioactive glass-ceramic apatite-wollastonite (A-W) has been incorporated into polyethylene in particulate form to create new bioactive composites for potential maxillofacial applications. The effects of varying the volume fraction of glass-ceramic A-W filler and the glass-ceramic A-W particle size were investigated by measuring the bonding strength of the bonelike apatite layer formed on the surface of glass-ceramic A-W-polyethylene composites. The bonding strength was evaluated via a modified ASTM C-333 standard in which a tensile stress was applied to the substrate and the strength of the bioactive layer was compared with that formed on commercially available hydroxyapatite-polyethylene composite samples, HAPEX. The composites demonstrated greater bonding strength with increased filler content and reduced filler particle size (maximum 6.9 +/- 0.5 MPa) and a marginally greater bonding strength as compared with HAPEX (2.8 +/- 0.5 MPa), when glass-ceramic A-W-polyethylene composite samples with the same filler content were tested. The higher bonding strength of the apatite layer formed on the A-W-polyethylene composite samples suggests that, in addition to maxillofacial applications, these composites might also be utilized in applications involving higher levels of load bearing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.10131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!