Assigning biologic function to the many sequenced but still uncharacterized genes remains the greatest obstacle confronting the human genome project. Differential gene expression profiling routinely detects uncharacterized genes aberrantly expressed in conditions such as cancer but cannot determine which genes are functionally involved in such complex phenotypes. Integrating gene expression profiling with specific modulation of gene expression in relevant disease models can identify complex biologic functions controlled by currently uncharacterized genes. Here, we used systemic gene transfer in tumor-bearing mice to identify novel antiinvasive and antimetastatic functions for Fkbp8, and subsequently for Fkbp1a. Fkbp8 is a previously uncharacterized member of the FK-506-binding protein (FKBP) gene family down-regulated in aggressive tumors. Antitumor effects produced by Fkbp1a gene expression are mediated by cellular pathways entirely distinct from those responsible for antitumor effects produced by Fkbp1a binding to its bacterially derived ligand, rapamycin. We then used gene expression profiling to identify syndecan 1 (Sdc1) and matrix metalloproteinase 9 (MMP9) as genes directly regulated by Fkbp1a and Fkbp8. FKBP gene expression coordinately induces the expression of the antiinvasive Sdc1 gene and suppresses the proinvasive MMP9 gene. Conversely, short interfering RNA-mediated suppression of Fkbp1a increases tumor cell invasion and MMP9 levels, while down-regulating Sdc1. Thus, syndecan 1 and MMP9 appear to mediate the antiinvasive and antimetastatic effects produced by FKBP gene expression. These studies show that uncharacterized genes differentially expressed in metastatic cancers can play important functional roles in the metastatic phenotype. Furthermore, identifying gene regulatory networks that function to control tumor progression may permit more accurate modeling of the complex molecular mechanisms of this disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC283578 | PMC |
http://dx.doi.org/10.1073/pnas.2332307100 | DOI Listing |
Tissue Eng Part A
January 2025
Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA.
The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters.
View Article and Find Full Text PDFBackground: Gastric cancer (GC) has a poor prognosis, considerable cellular heterogeneity, and ranks fifth among malignant tumours. Understanding the tumour microenvironment (TME) and intra-tumor heterogeneity (ITH) may lead to the development of novel GC treatments.
Methods: The single-cell RNA sequencing (scRNA-seq) dataset was obtained from the Gene Expression Omnibus (GEO) database, where diverse immune cells were isolated and re-annotated based on cell markers established in the original study to ascertain their individual characteristics.
Neuromolecular Med
January 2025
Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China.
Alzheimer's disease (AD) is a prototypical neurodegenerative disorder, predominantly affecting individuals in the presenile and elderly populations, with an etiology that remains elusive. This investigation aimed to elucidate the alterations in anoikis-related genes (ARGs) in the AD brain, thereby expanding the repertoire of biomarkers for the disease. Using publically available gene expression data for the hippocampus from both healthy and AD subjects, differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Background: The traditional use of Moringa oleifera (MO), an essential food source in Africa and Asia, to cure various diseases dates back thousands of years. This study examines the aqueous and ethanolic leaf extracts of MO's in vitro anti-leukemia capabilities.
Methods: After preparing aqueous and ethanolic MO leaf extracts, cells were treated with various concentrations for 48 h.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!