External beam radiation therapy is an effective therapy for localized prostate cancer, although failures occur at high rates. One variable that may affect the radiosensitivity of prostate tumor cells is their p53 status because this gene controls radiation-induced cell cycle arrest, apoptosis, and the repair of DNA damage. Using a system in which p53 function was conditionally restored to p53-null PC3 prostate cancer cells by stable transfection with a human temperature-sensitive p53 mutant allele, we tested the hypothesis that functional p53 increases cell cycle arrest and contributes to increased clonogenic survival after ionizing radiation (IR) of prostate carcinoma cells. Cell cycle arrest and clonogenic survival in response to single and multiple daily exposures to clinically relevant 2-Gy doses of IR were examined. Whereas the temperature-sensitive p53 protein was activated by phosphorylation after IR exposure at both the restrictive and permissive temperatures, Cdkn1/p21 was only induced by functional p53 (at the permissive temperature). In the presence of functional p53, the maintenance of G(2) arrest was significantly longer (P < 0.01), and a small increase in cell survival measured by clonogenic assay was seen after exposure to a single 2-Gy dose of IR. However, functional p53 significantly increased clonogenic survival (P < 0.01) after exposure to daily doses of 2 Gy of IR and contributed to a more sustained G(2) arrest and increased G(1) arrest in response to the multifraction regimen. These studies implicate the presence of wild-type p53 with increased survival of prostate carcinoma cells after fractionated exposure to radiation. Additionally, the data provide evidence that wild-type p53 in prostate tumor cells may reduce the effectiveness of radiation therapy.
Download full-text PDF |
Source |
---|
Discov Oncol
January 2025
Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
Aging is an inevitable physiological process in organisms, and the development of tumors is closely associated with cellular senescence. This article initially examines the role of cellular senescence in tumorigenesis, emphasizing the correlation between telomere length-a marker of cellular senescence-and tumor risk. Concurrently, the study explores the expression levels of senescence-associated markers, such as p16, p53, and mTOR, in the context of tumor development.
View Article and Find Full Text PDFUrologie
January 2025
Klinik für Urologie, Uro-Onkologie, roboter-assistierte und spezielle urologische Chirurgie, Uniklinik Köln, Kerpener Str. 62, 50927, Köln, Deutschland.
Introduction: Prostate cancer guidelines recommend molecular analysis of biomaterial following resistance to first-line systemic therapy in order to identify druggable mutations. We report on our results of molecular analysis of tissue specimens via next generation sequencing (NGS) in men with metastatic castration resistant prostate cancer (mCRPC).
Patients And Methods: In all, 311 mCRPC patients underwent NGS analysis from biopsy samples of progressive metastatic lesions or archival radical prostatectomy specimens.
Elife
January 2025
Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, United States.
Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
Neuroblastoma (NB) is a rare embryonal neuroendocrine tumor that primarily affects children aged 5 years old or younger. In advanced stages, NB requires a multifaceted treatment approach, including a combination of surgery, chemo, and radiation therapy. However, high-risk NB is still associated with poor prognosis, long-term side effects, and a high chance of relapse.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
Objective: Primary tumors of the brain and a large percent of malignant brain tumors are gliomas. Gliomas comprise high-grade gliomas like glioblastoma multiforme (GBMs), many of which have mutation in the tumor suppressor p53 gene and low-grade gliomas (LGGs). LGGs can progress to GBMs due to various factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!