Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The stability of the retinal chromophore attachment varies between different visual pigments and may factor in some retinal disease states. Opsin appears to stabilize this Schiff base linkage by: (i) affecting the hydrolysis chemistry, (ii) shielding the retinal linkage from solvent, or (iii) acting as a kinetic trap to slow retinal release. Here we describe methods to determine Schiff base stability in rhodopsin, present examples of dark state and MII rhodopsin stability differences, and show that studies of mutants E113Q and D190N demonstrate different parts of rhodopsin influence Schiff base stability in different ways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.visres.2003.08.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!