Description of a quantum convolutional code.

Phys Rev Lett

INRIA, Projet CODES, BP 105, F-78153 Le Chesnay, France.

Published: October 2003

We describe a quantum error correction scheme aimed at protecting a flow of quantum information over long distance communication. It is largely inspired by the theory of classical convolutional codes which are used in similar circumstances in classical communication. The particular example shown here uses the stabilizer formalism. We provide an explicit encoding circuit and its associated error estimation algorithm. The latter gives the most likely error over any memoryless quantum channel, with a complexity growing only linearly with the number of encoded qubits.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.91.177902DOI Listing

Publication Analysis

Top Keywords

description quantum
4
quantum convolutional
4
convolutional code
4
code describe
4
describe quantum
4
quantum error
4
error correction
4
correction scheme
4
scheme aimed
4
aimed protecting
4

Similar Publications

The large numbers of ion exchange resins used in various industries (food, pharmaceutitics, mining, hydrometallurgy), and especially in water treatment, are based on cross-linked polystyrene and divinylbenzene copolymers with functional groups capable of ion exchange. Their advantage, which makes them environmentally friendly, is the possibility of their regeneration and reuse. Taking into account the wide application of these materials, styrene-divinylbenzene resin with a quaternary ammonium functional group, AmberliteIRA402, was characterized using a well-known and widely used method, FT-IR spectroscopy.

View Article and Find Full Text PDF

The mathematical representation of the universe consists of sequences of symbols, rules and operators containing Gödel's undecidable propositions: information and its manipulation, also with Turing Machines. Classical information theory and mathematics, ideally independent from the medium used, can be interpreted realistically and objectively from their correspondence with quantum information, which is physical. Each representation of the universe and its evolution are, in any case, physical subsets of the universe, structured sets of observers and their complements in the universe made with spacetime events generated by local quantum measurements.

View Article and Find Full Text PDF

Exploring the Thermodynamic Uncertainty Constant: Insights from a Quasi-Ideal Nano-Gas Model.

Entropy (Basel)

November 2024

Department of Physics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 224, Bvd du Triomphe, 1050 Brussels, Belgium.

In previous work, we investigated thermodynamic processes in systems at the mesoscopic level where traditional thermodynamic descriptions (macroscopic or microscopic) may not be fully adequate. The key result is that entropy in such systems does not change continuously, as in macroscopic systems, but rather in discrete steps characterized by the quantization constant β. This quantization reflects the underlying discrete nature of the collision process in low-dimensional systems and the essential role played by thermodynamic fluctuations at this scale.

View Article and Find Full Text PDF

The Two-Spin Enigma: From the Helium Atom to Quantum Ontology.

Entropy (Basel)

November 2024

EPITA Research Laboratory, 14-16 Rue Voltaire, 94270 Le Kremlin-Bicêtre, France.

The purpose of this article is to provide a novel approach and justification of the idea that classical physics and quantum physics can neither function nor even be conceived without the other-in line with ideas attributed to, e.g., Niels Bohr or Lev Landau.

View Article and Find Full Text PDF

The study of emerging contaminants (ECs) in water resources has garnered significant attention due to their potential risks to human health and the environment. This review examines the contribution from computational approaches, focusing on the application of machine learning (ML) and molecular dynamics (MD) simulations to understand and optimize experimental applications of ECs adsorption on carbon-based nanomaterials. Condensed matter physics plays a crucial role in this research by investigating the fundamental properties of materials at the atomic and molecular levels, enabling the design and engineering of materials optimized for contaminant removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!