The absorption and fluorescence properties of chlorosomes of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001 were analyzed. The chlorosome antenna of Chloronema consists of bacteriochlorophyll (BChl) d and BChl c together with gamma-carotene as the main carotenoid. HPLC analysis combined with APCI LC-MS/MS showed that the chlorosomal BChls comprise a highly diverse array of homologues that differ in both the degree of alkylation of the macrocycle at C-8 and/or C-12 and the alcohol moiety esterified to the propionic acid group at C-17. BChl c and BChl d from Chloronema were mainly esterified with geranylgeraniol (33% of the total), heptadecanol (24%), octadecenol (19%), octadecanol (14%), and hexadecenol (9%). Despite this pigment heterogeneity, fluorescence emission of the chlorosomes showed a single peak centered at 765 nm upon excitation at wavelengths ranging from 710 to 740 nm. This single emission, assigned to BChl c, indicates an energy transfer from BChl d to BChl c within the same chlorosome. Likewise, incubation of chlorosomes under reducing conditions caused a weak increase in fluorescence emission, which indicates a small redox-dependent fluorescence. Finally, protein analysis of Chloronema chlorosomes using SDS-PAGE and MALDI-TOF-MS revealed the presence of a chlorosomal polypeptide with a molecular mass of 5.7 kDa, resembling the CsmA protein found in Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes. Several minor polypeptides were also detected but not identified. These results indicate that, compared with other members of filamentous anoxygenic phototrophic bacteria and green sulfur bacteria, Chloronema possesses an antenna system with novel features that may be of interest for further investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-003-0608-6DOI Listing

Publication Analysis

Top Keywords

filamentous anoxygenic
12
anoxygenic phototrophic
12
bchl bchl
12
chlorosome antenna
8
phototrophic bacterium
8
bacterium chloronema
8
chloronema strain
8
strain udg9001
8
fluorescence emission
8
bchl
7

Similar Publications

A new filamentous phototrophic bacterium Khr17 was isolated as an enrichment culture from the brackish polar lake Bol'shie Khruslomeny. The organism was a halotolerant, strictly anaerobic phototroph possessing photosystem II. Sulfide was required for phototrophic growth.

View Article and Find Full Text PDF

Coaggregation Occurs between a Piliated Unicellular Cyanobacterium, , and a Filamentous Bacterium, .

Microorganisms

September 2024

Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397, Tokyo, Japan.

Cyanobacteria are widely distributed in natural environments including geothermal areas. A unicellular cyanobacterium, , in a deeply branching lineage, develops thick microbial mats with other bacteria, such as filamentous anoxygenic photosynthetic bacteria in the genus , in slightly alkaline hot-spring water at ~55 °C. However, strains do not form cell aggregates under axenic conditions, and the cells are dispersed well in the culture.

View Article and Find Full Text PDF
Article Synopsis
  • Silicifying environments, like hot springs, are key for preserving microbial life, providing insights into microbial existence throughout Earth's history and potentially on other planets.* -
  • Research at Steep Cone Geyser in Yellowstone analyzed microbial materials from living systems, silicified areas, and lithified samples to understand how biosignatures change during the processes of silicification and burial.* -
  • The study revealed the presence of distinct microbial communities, especially Cyanobacteria, whose biosignatures changed from living samples to lithified ones, indicating that microbial preservation and community dynamics are complex and significant for understanding past life.*
View Article and Find Full Text PDF

Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium Synechococcus OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph Chloroflexus MS-CIW-1 (Chfl MS-1).

View Article and Find Full Text PDF

The biotechnological potential of the phylum.

Appl Environ Microbiol

June 2024

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal.

In the next decades, the increasing material and energetic demand to support population growth and higher standards of living will amplify the current pressures on ecosystems and will call for greater investments in infrastructures and modern technologies. A valid approach to overcome such future challenges is the employment of sustainable bio-based technologies that explore the metabolic richness of microorganisms. Collectively, the metabolic capabilities of , spanning aerobic and anaerobic conditions, thermophilic adaptability, anoxygenic photosynthesis, and utilization of toxic compounds as electron acceptors, underscore the phylum's resilience and ecological significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!