The expression of two intermediate filaments, nestin and vimentin, was studied in spinal cord injury (SCI) to elucidate their roles in the formation of glial scars. Rats were sacrificed 1, 4, and 7 days after induction of compression injury of the spinal cord using an aneurysm clip. The affected spinal cords were studied using antibodies against nestin and vimentin intermediate filaments. One day after spinal cord injury, some clusters of nestin-positive vessels were detected in the center of the injury, but few were seen in other cell types. Vimentin immunostaining was detected in some glial cells in the center and its level of immunoreactivity was enhanced in the ependymal cells of the central canal. On days 4 and 7 after spinal cord injury, astrocytes and some ependymal cells in the central canal were stained positively for nestin and increased expression of nestin was observed in vessels. Vimentin was detected in some macrophages and astrocytes in the lesions. Nestin was co-localized with glial fibrillary acidic protein in some glial cells in SCI. These findings imply that spinal cord cells in adult animals have embryonic capacity, and these cells are activated after injury, which in turn contributes to repair of spinal cord injury through formation of a glial scar.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spinal cord
28
cord injury
20
intermediate filaments
12
glial scar
8
spinal
8
injury
8
nestin vimentin
8
formation glial
8
glial cells
8
ependymal cells
8

Similar Publications

Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods.

View Article and Find Full Text PDF

Introduction: The severity of spinal cord injury (SCI) is closely tied to pulmonary function, especially in cases of higher SCI levels. Despite this connection, the underlying pathological mechanisms in the lungs post-SCI are not well understood. Previous research has established a connection between disrupted sympathetic regulation and splenocyte apoptosis in high thoracic SCI, leading to pulmonary dysfunction.

View Article and Find Full Text PDF

Background: The tooth exhibits increased sensitivity to noxious stimuli due to the dense innervation of thin myelinated Aδ fibers and unmyelinated C fibers within the dental pulp. While prior research has identified dynorphin expression in layers I-II of the dorsal horn across the spinal cord in various pain models, its functional role in trigeminal nociception, including tooth pain, remains underexplored. This study examines the potential role of dynorphin in the nociceptive processing of dental stimuli.

View Article and Find Full Text PDF

Thoracoabdominal aortic aneurysm (TAAA) repair remains one of the most challenging procedures and is associated with high mortality and complication rates. Careful consideration of the surgical strategy is essential, particularly in cases involving extensive replacement and high-risk patients. A 61-year-old man with a 55-mm TAAA was referred for surgical treatment.

View Article and Find Full Text PDF

Background: Myelin-laden foamy macrophages accumulate extensively in the lesion epicenter, exhibiting characteristics of autophagolysosomal dysfunction, which leads to prolonged inflammatory responses after spinal cord injury (SCI). Trehalose, known for its neuroprotective properties as an autophagy inducer, has yet to be fully explored for its potential to mitigate foamy macrophage formation and exert therapeutic effects in the context of SCI.

Results: We observed that trehalose significantly enhances macrophage phagocytosis and clearance of myelin in a dose-dependent manner in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!