Beta(2)-adrenoceptor agonists, especially terbutaline, are widely used to arrest preterm labor, but they also cross the placenta to stimulate fetal beta-adrenoceptors that control neural cell differentiation. We evaluated the effects of terbutaline administration in neonatal rats, a stage of neurodevelopment corresponding to human fetal development. Terbutaline administered on postnatal days PN2 to 5 elicited neurochemical changes indicative of neuronal injury and reactive gliosis: immediate increases in glial fibrillary acidic protein and subsequent induction of the 68-kDa neurofilament protein. Quantitative morphological evaluations carried out on PN30 indicated structural abnormalities in the cerebellum, hippocampus, and somatosensory cortex. In the cerebellum, PN2 to 5 terbutaline treatment reduced the number of Purkinje cells and elicited thinning of the granular and molecular layers. The hippocampal CA3 region also displayed thinning, along with marked gliosis, effects that were restricted to females. In the somatosensory cortex, terbutaline evoked a reduction in the proportion of pyramidal cells and an increase in smaller, nonpyramidal cells; again, females were affected more than males. Although abnormalities were obtained with later terbutaline treatment (PN11 to 14), in general the effects were smaller than those seen with PN2 to 5 exposure. Our results indicate that terbutaline is a neurotoxicant that elicits biochemical alterations and structural damage in the immature brain during a critical period. These effects point to a causal relationship between fetal terbutaline exposure and the higher incidence of cognitive and neuropsychiatric disorders reported for the offspring of women receiving terbutaline therapy for preterm labor.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.103.060095DOI Listing

Publication Analysis

Top Keywords

somatosensory cortex
12
terbutaline
10
cerebellum hippocampus
8
hippocampus somatosensory
8
preterm labor
8
terbutaline treatment
8
effects
5
terbutaline developmental
4
developmental neurotoxicant
4
neurotoxicant effects
4

Similar Publications

Our previous in silico data indicated an overrepresentation of the ZF5 motif in the promoters of genes in which circadian oscillations are altered in the ventral hippocampus in the pilocarpine model of temporal lobe epilepsy in mice. In this study, we test the hypothesis that the Zbtb14 protein oscillates in the hippocampus in a diurnal manner and that this oscillation is disrupted by epilepsy. We found that Zbtb14 immunostaining is present in the cytoplasm and cell nuclei.

View Article and Find Full Text PDF

Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.

View Article and Find Full Text PDF

Unlabelled: Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation are shaped by the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice expressing channelrhodopsin-2 in L6CT neurons.

View Article and Find Full Text PDF

The idea of self-organized signal processing in the cerebral cortex has become a focus of research since Beggs and Plentz reported avalanches in local field potential recordings from organotypic cultures and acute slices of rat somatosensory cortex. How the cortex intrinsically organizes signals remains unknown. A current hypothesis was proposed by the condensed matter physicists Bak, Tang, and Wiesenfeld when they conjectured that if neuronal avalanche activity followed inverse power law distributions, then brain activity may be set around phase transitions within self-organized signals.

View Article and Find Full Text PDF

Background: Writer's cramp (WC) dystonia is an involuntary movement disorder with distributed abnormalities in the brain's motor network. Prior studies established the potential for repetitive transcranial magnetic stimulation (rTMS) to either premotor cortex (PMC) or primary somatosensory cortex (PSC) to modify symptoms. However, clinical effects have been modest with limited understanding of the neural mechanisms hindering therapeutic advancement of this promising approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!