In vitro susceptibility of CD4+ and CD8+ T cell subsets to fludarabine.

Biochem Pharmacol

Departamento de Inmunología Oncológica, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina.

Published: December 2003

Administration of the adenosine analogue fludarabine (FLU) in vivo induces a profound and prolonged T lymphopenia which mainly affects CD4(+) cells. To better understand the mechanistic basis underlying this preferential depletion, we analyzed the in vitro susceptibility of T cell subsets to FLU-induced apoptosis. Contrasting with observations in vivo, our results showed that treatment of peripheral blood mononuclear cells with FLU induced a higher level of apoptosis in CD8(+) than in CD4(+) T lymphocytes. This increased sensitivity of CD8(+) T cells to FLU was observed in samples from both, healthy donors and B cell chronic lymphocytic leukemia patients, and resulted in higher CD4:CD8 ratios in FLU-treated than in untreated cultures (P<0.01). Expression of factors involved in FLU transport and metabolism was then evaluated by quantitative real time-PCR in normal T cell subsets. It was found that mRNA levels of human equilibrative nucleoside transporter-1 nucleoside transporter were higher whereas deoxycytidine kinase and IMP/GMP selective 5'-nucleotidase mRNA levels were lower in CD4(+) cells. However the dCK/cN-II ratio was 2-fold greater in CD8(+) than in CD4(+) T lymphocytes, which could account for the higher apoptosis levels observed in the CD8(+) subset. These results favor the view that decreased CD4:CD8 ratios in FLU-treated patients should be attributed to differences in cell recovery and/or homing between T cell subsets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2003.07.008DOI Listing

Publication Analysis

Top Keywords

vitro susceptibility
8
cell subsets
8
cells flu
8
susceptibility cd4+
4
cd4+ cd8+
4
cd8+ cell
4
subsets fludarabine
4
fludarabine administration
4
administration adenosine
4
adenosine analogue
4

Similar Publications

Unlabelled: Avian leukosis virus subgroup J (ALV-J) poses a significant threat to the poultry industry; yet, our understanding of its replication and pathogenic mechanisms is limited. The Ten-Eleven Translocation 2 (TET2) is an indispensable regulatory factor in active DNA demethylation and immune response regulation. This study reports a significant and time-dependent decrease in TET2 levels following ALV-J infection and shows that the reduction of TET2 protein is mediated by the autophagy pathway.

View Article and Find Full Text PDF

This study addresses the use of other echinocandins as surrogate markers to predict the susceptibility of rezafungin against the six most common spp. The Clinical Laboratory Standards Institute (CLSI) reference broth microdilution method was performed to test 5,720 clinical isolates of six different species. Species-specific interpretative criteria by CLSI breakpoints or epidemiological cutoff values were applied.

View Article and Find Full Text PDF

Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.

Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses.

View Article and Find Full Text PDF

High-fructose and high-fat diet (HFHFD) has been associated with impaired spermatogenesis, leading to decreased sperm quality and increased male infertility, with similar effects observed in offspring. Cyanidin-3-O-glucoside (C3G), a recognized food antioxidant, has shown promise in protecting in male reproduction and modulating epigenetic modifications. However, its potential role in ameliorating intergenerational inheritance induced by HFHFD remains underexplored.

View Article and Find Full Text PDF

Inhibition of DEK restores hematopoietic stem cell function in Fanconi anemia.

J Exp Med

March 2025

Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.

Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!