Convergent-beam electron diffraction (CBED) and large-angle convergent-beam electron diffraction (LACBED) techniques are well adapted to the characterization of several types of crystal defects. In fact, dislocations, grain boundaries and stacking faults have already been successfully characterized with these methods. In the present paper, we describe the CBED and LACBED characterization of another type of crystal defect showing a special interest in materials science: antiphase boundaries (APBs). The first part of the paper is devoted to the determination of the effects of antiphase boundaries on CBED and LACBED patterns that could be expected from a theoretical point of view. It indicates that the superlattice excess lines present on these patterns are split into two lines with equal intensity when the incident beam is located on an APB. In the second part, we experimentally test these theoretical predictions on a specimen showing two different known types of antiphase boundaries. In a third part we indicate how these methods could be used to identify unknown APBs in a specimen. Finally, the advantages and disadvantages of both methods for the characterization of antiphase boundaries are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0304-3991(03)00022-6 | DOI Listing |
ACS Appl Mater Interfaces
October 2024
Institute of Molecular Plus, Department of Chemistry, Tianjin University & Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China.
The lithium lanthanum titanium oxide (LLTO) perovskite is one type of superior lithium (Li)-ion conductor that is of great interest as a solid-state electrolyte for all-solid-state lithium batteries. Structural defects and impurity phases formed during the synthesis of LLTO largely affect its Li-ion conductivity, yet the underlying Li diffusion mechanism at the atomic scale is still under scrutiny. Herein, we use aberration-corrected transmission electron microscopy to perform a thorough structural characterization of the LLTO ceramic pellet.
View Article and Find Full Text PDFNat Nanotechnol
December 2024
Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA.
Sci Rep
August 2024
Department of Earth System Sciences, Universität Hamburg, Grindelallee 48, 20146, Hamburg, Germany.
The pressure-induced structural changes in the perovskite-type (ABO ) ferroelectric solid solution (1-x)Na Bi TiO -xBaTiO (NBT-xBT) at the morphotropic phase boundary (MPB) ( ) have been analyzed up to 12.3 GPa by single-crystal x-ray diffraction with synchrotron radiation. A pressure-induced phase transition takes place between 4.
View Article and Find Full Text PDFNat Commun
August 2024
Laboratory of Nanomaterials & Nanomechanics, Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
Nanocrystalline metallic materials have the merit of high strength but usually suffer from poor ductility and rapid grain coarsening, limiting their practical application. Here, we introduce a core-shell nanostructure in a multicomponent alloy to address these challenges simultaneously, achieving a high tensile strength of 2.65 GPa, a large uniform elongation of 17%, and a high thermal stability of 1173 K.
View Article and Find Full Text PDFNat Commun
August 2024
Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, China.
Improvements in the polarization of environmentally-friendly perovskite ferroelectrics have proved to be a challenging task in order to replace the toxic Pb-based counterparts. In contrast to common methods by complex chemical composition designs, we have formed Mn-inlaid antiphase boundaries in Mn-doped (K,Na)NbO thin films using pulsed laser deposition method. Here, we observed that mono- or bi-atomic layer of Mn has been identified to inlay along the antiphase boundaries to balance the charges originated from the deficiency of alkali ions and to induce the strain in the KNN films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!