Reduced-folate transporter-1 (RFT-1) transports reduced-folates, such as N5-methyltetrahydrofolate (MTF), the predominant circulating form of folate. In RPE, RFT-1 is localized to the apical membrane and is thought to transport folate from RPE to photoreceptor cells. Folate is required for DNA, RNA, protein synthesis and the conversion of homocysteine (Hcy) to methionine. Decreased folate levels are associated with increased Hcy levels. In the present study, we asked whether RFT-1 activity in RPE is altered under high Hcy conditions and examined the transport mechanism for Hcy in RPE. Treatment of ARPE-19 cells, a human RPE cell line, with Hcy at concentrations higher than 50 microM led to a significant decrease in RFT-1 activity. This effect increased as the treatment time increased. The inhibitory effect of Hcy on RFT-1 activity was not non-specific, as the activities of several other nutrient transporters were not affected under identical conditions. The effect of Hcy on RFT-1 was associated primarily with a decrease in the maximal velocity with no detectable change in substrate affinity. The decrease in RFT-1 activity was accompanied by parallel changes in RFT-1 mRNA and protein. Uptake of Hcy in ARPE-19 cells occurred via several transport systems, including Na+-independent systems L and b(0,+) and the Na+-dependent systems B0, ATB(0,+) and A. Studies of the interaction of Hcy with one of the cloned transporters (ATB(0,+)) provided direct evidence for the translocation of Hcy across the membrane via the transporter. We conclude that several transport systems operate in ARPE-19 cells for the entry of Hcy and that high levels of Hcy have deleterious effects on the expression and activity of RFT-1 in these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2003.08.013DOI Listing

Publication Analysis

Top Keywords

rft-1 activity
16
transport systems
12
hcy
12
arpe-19 cells
12
rft-1
10
reduced-folate transporter-1
8
transporter-1 rft-1
8
folate rpe
8
decrease rft-1
8
hcy rft-1
8

Similar Publications

Riboflavin depletion promotes longevity and metabolic hormesis in Caenorhabditis elegans.

Aging Cell

November 2022

Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.

Riboflavin is an essential cofactor in many enzymatic processes and in the production of flavin adenine dinucleotide (FAD). Here, we report that the partial depletion of riboflavin through knockdown of the C. elegans riboflavin transporter 1 (rft-1) promotes metabolic health by reducing intracellular flavin concentrations.

View Article and Find Full Text PDF

Two potential orthologs of the human riboflavin transporter 3 (hRFVT3) were identified in the C. elegans genome, Y47D7A.16 and Y47D7A.

View Article and Find Full Text PDF

Purpose: Reduced-folate transporter-1 (RFT-1), a typical transport protein with 12 membrane-spanning domains, transports reduced-folates, such as N5-methyltetrahydrofolate (MTF), the predominant circulating form of folate. RFT-1 is localized to the RPE apical membrane and transports folate from RPE to photoreceptor cells. We asked whether RFT-1 activity in RPE is altered under high folate conditions.

View Article and Find Full Text PDF

Reduced-folate transporter-1 (RFT-1) transports reduced-folates, such as N5-methyltetrahydrofolate (MTF), the predominant circulating form of folate. In RPE, RFT-1 is localized to the apical membrane and is thought to transport folate from RPE to photoreceptor cells. Folate is required for DNA, RNA, protein synthesis and the conversion of homocysteine (Hcy) to methionine.

View Article and Find Full Text PDF

Purpose: The polarized distribution of reduced-folate transporter (RFT)-1 to the apical retinal pigment epithelial (RPE) membrane was demonstrated recently. Nitric oxide (NO) significantly decreases the activity of RFT-1 in cultured RPE cells. NO is elevated in diabetes, and therefore in the present study the alteration of RFT-1 activity in RPE under conditions of high glucose was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!