Membrane-bound heme-copper oxidases catalyze the reduction of O(2) to water. Part of the free energy associated with this process is used to pump protons across the membrane. The O(2) reduction reaction results in formation of high-pK(a) protonatable groups at the catalytic site. The free energy associated with protonation of these groups is used for proton pumping. One of these protonatable groups is OH(-), coordinated to the heme and Cu(B) at the catalytic site. Here we present results from EPR experiments on the Rhodobacter sphaeroides cytochrome c oxidase, which show that at high pH (9) approximately 50% of oxidized heme a(3) is hydroxide-ligated, while at low pH (6.5), no hydroxide is bound to heme a(3). The kinetics of hydroxide binding to heme a(3) were investigated after dissociation of CO from heme a(3) in the enzyme in which the heme a(3)-Cu(B) center was reduced while the remaining redox sites were oxidized. The dissociation of CO results in a decrease of the midpoint potential of heme a(3), which results in electron transfer (tau approximately equal 3 micros) from heme a(3) to heme a in approximately 100% of the enzyme population. At pH >7.5, the electron transfer is followed by proton release from a H(2)O molecule to the bulk solution (tau approximately equal 2 ms at pH 9). This reaction is also associated with absorbance changes of heme a(3), which on the basis of the results from the EPR experiments are attributed to formation of hydroxide-ligated heme a(3). The OH(-) bound to heme a(3) under equilibrium conditions at high pH is also formed transiently after O(2) reduction at low pH. It is proposed that the free energy associated with electron transfer to the binuclear center and protonation of this OH(-) upon reduction of the recently oxidized enzyme provides the driving force for the pumping of one proton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0347407 | DOI Listing |
Planta
January 2025
School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
Ginsenosides R2 and F2 are key active components of Panax japonicus var. major which exhibit a wide range of pharmacological effects. However, few UDP-glycosyltransferases (UGTs) involved in Rh2 and F2 biosynthesis have been identified.
View Article and Find Full Text PDFChemistry
January 2025
Fuzhou University, Department of Chemistry, Gongye Road 523#, 350002, Fuzhou, CHINA.
Single-atom catalysts (SACs) have emerged as a focal point of research in the field of heterogeneous catalysis. This paper reviews the progress in the studies of single atoms as promoters in various catalytic reactions, elucidating their distinctive role in comparison to the dominant active sites. We provide a discussion on the application of single-atom promoters (SAP) within host-guest systems in various catalysts, including metal oxide supported catalysts, molybdenum carbide-based catalysts, bimetallic catalysts, and others.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Supported nanoparticles incorporating catalytically attractive nonmetal elements have gained significant attention as a promising strategy for enhancing catalytic activity in various industrial applications. This study presents an innovative one-pot synthesis method for fabricating hybrid catalysts, which simultaneously modifies surface properties through the precipitation of nanoparticles with the concurrent incorporation of nonmetal elements. The underlying concept is to synchronize the temperature required for particle formation with that of nonmetal incorporation by adjusting the oxygen chemical potential of the host oxide.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
The utilization of 2D materials as catalysts has garnered significant attention in recent years, primarily due to their exceptional features including high surface area, abundant exposed active sites, and tunable physicochemical properties. The unique geometry of 2D materials imparts them with versatile active sites for catalysis, including basal plane, interlayer, defect, and edge sites. Among these, edge sites hold particular significance as they not only enable the activation of inert 2D catalysts but also serve as platforms for engineering active sites to achieve enhanced catalytic performance.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China.
Dual-metal site catalysts (DMSCs) supported on nitrogen-doped graphene have shown great potential in heterogeneous catalysis due to their unique properties and enhanced efficiency. However, the precise control and stabilization of metal dimers, particularly in oxygen activation reactions, present significant challenges in practical applications. In this study, we integrate high-throughput density functional theory calculations with machine learning techniques to predict and optimize the catalytic properties of DMSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!