Chemical and biochemical changes in prickly pears with different ripening behaviour.

Nahrung

Laboratorio de Biotecnología Agrícola Aplicada, Instituto Tecnólogico Agropecuario de Aguascalientes, Ojo Caliente IV, Aguascalientes, Ags., México.

Published: October 2003

Chemical and biochemical changes were studied in ripening prickly pears from three Opuntia morphospecies with different ripening behaviour: Naranjona (O. ficus-indica), Blanca Cristalina (Opuntia sp.), and Charola (O. streptacantha), of early, intermediate, and late ripening, respectively. At fullyripe stage (commercial maturity), Blanca Cristalina showed the biggest fruits, the hardest texture, and its pulp had the highest protein content. There were no significant differences among morphospecies in pH or total soluble solids in fully ripe fruits. The three species exhibited considerable levels of vitamin C, dietary fibre, and minerals such as calcium, iron, and zinc. Protein expression was analysed in pulp and skin from every species at physiological and commercial maturity. Some proteins appeared at both stages, while many others expressed differentially. This study evaluated prickly pear components important for human nutrition and health, and provided basic information on pricky pear ripening, with a view to its control and to improving shelf life.

Download full-text PDF

Source
http://dx.doi.org/10.1002/food.200390077DOI Listing

Publication Analysis

Top Keywords

chemical biochemical
8
biochemical changes
8
prickly pears
8
ripening behaviour
8
blanca cristalina
8
commercial maturity
8
ripening
5
changes prickly
4
pears ripening
4
behaviour chemical
4

Similar Publications

GLiDe: a web-based genome-scale CRISPRi sgRNA design tool for prokaryotes.

BMC Bioinformatics

January 2025

MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Background: CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern in CRISPRi applications.

Results: We introduce Guide Library Designer (GLiDe), a web-based tool specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in prokaryotic organisms.

View Article and Find Full Text PDF

Synthesis and characterization of dextran palmitate for extrusion 3D printing.

Int J Biol Macromol

January 2025

KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium. Electronic address:

The fabrication of objects with complex shape and geometry has been greatly facilitated with the advancements in additive manufacturing. While synthetic polymers like ABS and PLA have found widespread use in extrusion 3D printing, other biobased thermoplastics that are both biodegradable and biocompatible could offer strategic advantages over traditional synthetic materials. In this work dextran of low (20 kDa) and medium (40 kDa) molecular weight (MW) was modified with palmitic acid to obtain meltable polymers for extrusion 3D printing/fused deposition modeling additive manufacturing.

View Article and Find Full Text PDF

The hydrodynamics, water temperature, and water quality model for the Dan River and Renzhuang Reservoir continuum were developed using field monitoring data and the Environmental Fluid Dynamics Code (EFDC). An in-situ water discharge experiment enabled the calculation of water propagation time using a simulated flood progression method and the hydrodynamics module of EFDC. Based on these model results, degradation coefficients for chemical oxygen demand, biochemical oxygen demand, nitrogen (N), phosphorus (P), fluoride, arsenic were determined, revealing significantly higher values when the wetland barrage was opening.

View Article and Find Full Text PDF

The proteome is a terminal electron acceptor.

Proc Natl Acad Sci U S A

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

Microbial metabolism is impressively flexible, enabling growth even when available nutrients differ greatly from biomass in redox state. , for example, rearranges its physiology to grow on reduced and oxidized carbon sources through several forms of fermentation and respiration. To understand the limits on and evolutionary consequences of this metabolic flexibility, we developed a coarse-grained mathematical framework coupling redox chemistry with principles of cellular resource allocation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India.

Background: The current study aimed to investigate the chemical interaction of naringenin with the possible receptors and enzymes involved in the pathogenesis of cognitive deficits and tested their ADME and toxicity. Furthermore, in-vivo studies have also done to evaluate the effect of naringenin and its nanoparticles on STZ-induced cognitive decline in mice.

Method: Naringenin were evaluated against the active sites of β-secretase 1 (PDB: 3UQU), human insulin-degrading enzyme (PDB: 4RE9), insulin receptor tyrosine kinase (PDB: 1IR3), glycogen synthase kinase-3 β (PDB: 3L1S), phosphoprotein phosphatase 2A (PDB: 3P71), human superoxide dismutase I (PDB: 5YT0), catalase-3 (PDB:3EJ6), and human acetylcholinesterase (PDB: 4EY7) in comparison of rivastigmine using molecular docking studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!