High piezoelectric coupling coefficients of PZT-based material systems can be employed for actuator functions in micro-electro-mechanical systems (MEMS) offering displacements and forces which outperform standard solutions. This paper presents simulation, fabrication, and development results of a stress-compensated, PZT-coated cantilever concept in which a silicon bulk micromachining process is used in combination with a chemical solution deposition (CSD) technique. Due to an analytical approach and a finite element method (FEM) simulation for a tip displacement of 10 microm, the actuator was designed with a cantilever length of 300 microm to 1000 microm. Special attention was given to the Zr/Ti ratio of the PZT thin films to obtain a high piezoelectric coefficient. For first characterizations X-ray diffraction (XRD), scanning electron microscopy (SEM), hysteresis-, current-voltage I(V)- and capacitance-voltage C(V)-measurements were carried out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tuffc.2003.1244739 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!