Objectives: Transplant results for Fanconi anemia with alternative-donor bone marrow transplantation currently entail a high incidence of graft failure and graft-versus-host disease (GVHD). The authors sought to improve outcome in this disease category with alternative donors with a 5-6/6 antigen match by transplantation of highly purified peripheral blood progenitor cells (PBPC) using the Isolex 300i v2.5 device as a means of T-cell depletion to lessen the risk of GVHD.

Methods: All Fanconi anemia patients (n = 8) received the same preparative regimen that included total body irradiation (450 cGy), Cytoxan (20 mg/kg), ATGAM, and fludarabine (120 mg/m2). The cell dose of CD34+ cells was a median of 11.4 x 10(6)/kg; the cell dose of CD3+ cells was a median of 1.9 x 10(4)/kg. Primary engraftment was rapid in all patients, with neutrophil recovery occurring at a median of day 10 and platelet count more than 50,000 on day 27. Two patients subsequently had secondary graft failure. Despite lack of cyclosporine GVHD prophylaxis, only two patients developed acute GVHD (both grade I), and no patients developed chronic GVHD. Three patients died: one at day 59 secondary to disseminated fungal infection, the second at day 196 during a second transplant, and the third at day 202 due to graft failure. With a median follow-up of 12 months, the overall survival was 58 +/- 18%.

Conclusions: Transplantation of CD34-selected PBPCs from alternative donors results in a very low risk of GVHD in patients with Fanconi anemia.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00043426-200311000-00013DOI Listing

Publication Analysis

Top Keywords

fanconi anemia
16
alternative donors
12
graft failure
12
low risk
8
graft-versus-host disease
8
peripheral blood
8
blood progenitor
8
progenitor cells
8
cell dose
8
cells median
8

Similar Publications

: Characterization and genotype-phenotype correlation of patients with Fanconi anemia in a multi-ethnic population.

Haematologica

January 2025

Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva; Sackler Faculty of Medicine, Aviv University, Aviv; ; Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva.

View Article and Find Full Text PDF

ALDH Enzymes and Hematological Diseases: A Scoping Review of Literature.

Discov Med

December 2024

Department of Biological Hematology, Tours University Hospital, 37000 Tours, France.

Aldehyde dehydrogenases (ALDHs) constitute a group of enzymes that catalyze the oxidation of aldehydes to carboxylic acids. The human ALDH superfamily, including 19 different isoenzymes (ALDH1A1, ALDH1A2, ALDH1A3, AHDH1B1, ALDH1L1, ALDH1L2, ALDH2, ALDH3A1, ALDH3A2, ALDH3B1, ALDH3B2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, ALDH8A1, ALDH9A1, ALDHA16A1, ALDH18A1), displays different key physiological and toxicological functions, with specific tissue expression and substrate specificity. Several studies have established that ALDH are interesting markers for the identification and quantification of human hematopoietic stem cells and cancer stem cells, notably leukemic stem cells.

View Article and Find Full Text PDF

Breast cancer stem cells (BCSCs) are a rare cell population that is responsible for tumour initiation, metastasis and chemoresistance. Despite this, the mechanism by which BCSCs withstand genotoxic stress is largely unknown. Here, we uncover a pivotal role for the arginine methyltransferase PRMT5 in mediating BCSC chemoresistance by modulating DNA repair efficiency.

View Article and Find Full Text PDF

Assessments of breast cancer (BC) risk in carriers of pathogenic variants identified by gene panel testing in different populations are highly in demand worldwide. We performed target sequencing of 78 genes involved in DNA repair in 860 females with BC and 520 age- and family history-matched controls from Central Russia. Among BC patients, 562/860 (65.

View Article and Find Full Text PDF

DNA phenotyping and mapping intragenic deletion mutations in Fanconi anemia: Patterns and diagnostic inferences.

J Genet Eng Biotechnol

December 2024

Medical Molecular Genetics Dpt., Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt. Electronic address:

Background: Fanconi anemia is a genetically heterogeneous recessive disorder distinguished by cytogenetic instability, hypersensitivity to DNA crosslinking agents, increased chromosomal breakage, and disturbed DNA repair. To date, Fanconi anemia complementation group (FANC) includes 23 FANC genes identified of which, FANCA gene is the most commonly mutated. The mutation spectrum of the FANCA gene is highly heterogeneous with large intragenic deletions due to Alu elements-mediated recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!