Various selected vegetables, fruits, mushrooms and red wine residue inhibit bone resorption in rats.

J Nutr

Bone Biology Group, Department of Clinical Research, University of Bern, Murtenstrasse 35, CH-3010, Bern, Switzerland.

Published: November 2003

AI Article Synopsis

Article Abstract

To make a broad survey of the effect of components of the human diet on bone resorption, a few items from the following categories were added to rat diets: vegetables, fruits, beans, nuts and seeds, mushrooms, carbohydrate sources and beverages. The effect on bone resorption was measured by the urinary excretion of tritium released from bones of 9-wk-old rats prelabeled with tritiated tetracycline from weeks 1 to 6. The number of rats per experiment was 26--6, 5, 5, 5 and 5 in the untreated control group fed the plain semipurified diet, the positive control group fed onions and three groups fed one of the newly investigated items, respectively. New experiments were added until 10 rats were fed each item in each of two separate experiments. The results for each item were compared to those for the untreated control group (n = 12) investigated simultaneously. We found that feeding rats 1 g/d of dry fennel, celeriac, oranges, prunes, French beans and farmed and wild mushrooms (Agaricus hortensis and Boletus edulis) as well as the freeze-dried residue from red wine significantly (P < 0.05 or lower) inhibited bone resorption. Eighteen items had no significant effect. To date we have found 25/53 items that exhibit inhibitory activity. Activity appears to be restricted to the following categories: vegetables, salads, herbs, mushrooms, fruits and red wine residue (25/36 items effective). Furthermore, as assessed in a similar experimental design with various doses of a mixture of active items, we determined the minimum effective dose of the dry items to be 170 mg/d. These results open the possibility for targeted interventions in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/133.11.3592DOI Listing

Publication Analysis

Top Keywords

bone resorption
16
red wine
12
control group
12
vegetables fruits
8
wine residue
8
untreated control
8
group fed
8
items
7
rats
5
selected vegetables
4

Similar Publications

Congenital hypogonadotropic hypogonadism (CHH) can cause delayed secondary sexual characteristics and contribute to juvenile osteoporosis, with multiple causative genes having been reported. We treated a 27-year-old man diagnosed with central hypogonadism, presenting with delayed secondary sexual characteristics and juvenile osteoporosis, using bone resorption inhibitors and testosterone therapy. Genetic testing revealed missense variants both in the fibroblast growth factor receptor 1 () and gonadotropin-releasing hormone receptor () genes, a combination that has not been previously reported.

View Article and Find Full Text PDF

A vascularized free fibula flap is often used to reconstruct bone defects. However, bone resorption within the osteotomized segment is often observed. This may be attributed to damage to bone blood flow supplied by nonpenetrating periosteal vessels (NPPVs); however, there are few studies on NPPVs in the fibula.

View Article and Find Full Text PDF

Background And Objective: As the global population ages, degenerative spinal disorders are on the rise, leading to an increased focus on optimizing spinal fusion therapies. Despite the high success rate of iliac crest bone autografts, their usage is hampered by donor site morbidity and limited supply. The objective of this review is to assess the viability of ceramic-based synthetic materials as alternatives in spinal fusion surgeries.

View Article and Find Full Text PDF

Introduction: Aseptic recalcitrant nonunion (ARNU) of the femur and tibia is an entity in which the absence of bony union, misalignment, and limb length discrepancies (LLD) coexist. Currently, the management of these cases lacks consensus. This study aimed to describe the bone union rate and deformity correction outcomes in patients with ARNU of the femur or tibia treated with the Induced Membrane Technique (IMT).

View Article and Find Full Text PDF

Probiotic-rich fermented milk from IIA-1A5: Effects on pregnancy health in the animal model.

Narra J

December 2024

Department of Animal Production and Technology, Faculty of Animal Science, Institut Pertanian Bogor, Bogor, Indonesia.

Previous studies of IIA-1A5 have shown its potential as a probiotic in modulating gut microbiota and providing health benefits; however, its effects during pregnancy remain underexplored. The aim of this study was to assess the safety of fermented milk enriched with IIA-IA5 in pregnant mice. An experimental study was conducted at Universitas Andalas, Padang, Indonesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!