T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redox-dependent production of nitric oxide.

J Immunol

Department of Medicine, State University of New York, College of Medicine, Syracuse, NY 13210, USA.

Published: November 2003

Activation, proliferation, or programmed cell death of T lymphocytes is regulated by the mitochondrial transmembrane potential (Deltapsi(m)) through controlling ATP synthesis, production of reactive oxygen intermediates (ROI), and release of cell death-inducing factors. Elevation of Deltapsi(m) or mitochondrial hyperpolarization is an early and reversible event associated with both T cell activation and apoptosis. In the present study, T cell activation signals leading to mitochondrial hyperpolarization were investigated. CD3/CD28 costimulation of human PBL elevated cytoplasmic and mitochondrial Ca(2+) levels, ROI production, and NO production, and elicited mitochondrial hyperpolarization. Although T cell activation-induced Ca(2+) release, ROI levels, and NO production were diminished by inositol 1,4,5-triphosphate receptor antagonist 2-aminoethoxydiphenyl borane, superoxide dismutase mimic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride, spin trap 5-diisopropoxyphosphoryl-5-methyl-1-pyrroline-N-oxide, and NO chelator carboxy-2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, mitochondrial hyperpolarization was selectively inhibited by carboxy-2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (-85.0 +/- 10.0%; p = 0.008) and, to a lesser extent, by 2-aminoethoxydiphenyl borane. Moreover, NO precursor (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate diethylenetriamine elicited NO and ROI production, Ca(2+) release, transient ATP depletion, and robust mitochondrial hyperpolarization (3.5 +/- 0.8-fold; p = 0.002). Western blot analysis revealed expression of Ca-dependent endothelial NO synthase and neuronal NO synthase isoforms and absence of Ca-independent inducible NO synthase in PBL. CD3/CD28 costimulation or H(2)O(2) elicited severalfold elevations of endothelial NO synthase and neuronal NO synthase expression, as compared with beta-actin. H(2)O(2) also led to moderate mitochondrial hyperpolarization; however, Ca(2+) influx by ionomycin or Ca(2+) release from intracellular stores by thapsigargin alone failed to induce NO synthase expression, NO production, or Deltapsi(m) elevation. The results suggest that T cell activation-induced mitochondrial hyperpolarization is mediated by ROI- and Ca(2+)-dependent NO production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078644PMC
http://dx.doi.org/10.4049/jimmunol.171.10.5188DOI Listing

Publication Analysis

Top Keywords

mitochondrial hyperpolarization
32
cell activation-induced
12
ca2+ release
12
mitochondrial
10
activation-induced mitochondrial
8
hyperpolarization
8
hyperpolarization mediated
8
production
8
cell activation
8
cd3/cd28 costimulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!