Cloning, expression and characterization of a poly(3-hydroxybutyrate) depolymerase from Marinobacter sp. NK-1.

Int J Biol Macromol

Material Science Laboratory, Department of Biological and Chemical Engineering, Faculty of Engineering, Gunma University, 1-5-1 Tenjin, Kiryu-shi, Gunma 376-8515, Japan.

Published: December 2003

A DNA fragment carrying the gene encoding poly(3-hydroxybutyrate) (P(3HB)) depolymerase was cloned from the genomic DNA of Marinobacter sp. DNA sequencing analysis revealed that the Marinobacter sp. P(3HB) depolymerase gene is composed of 1734bp and encodes 578 amino acids with a molecular mass of 61,757Da. A sequence homology search showed that the deduced protein contains the signal peptide, catalytic domain (CD), cadherin-type linker domain (LD), and two substrate-binding domain (SBD). The fusion proteins of glutathione S-transferase (GST) with the CD showed the hydrolytic activity for denatured P(3HB) (dP(3HB)), P(3HB) emulsion (eP(3HB)) and p-nitrophenylbutyrate. On the other hand, the fusion proteins lacking the SBD showed much lower hydrolytic activity for dP(3HB) compared to the proteins containing both CD and SBD. In addition, binding tests revealed that the SBDs are specifically bound not to eP(3HB) but dP(3HB). These suggest that the SBDs play a crucial role in the enzymatic hydrolysis of dP(3HB) that is a solid substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2003.08.006DOI Listing

Publication Analysis

Top Keywords

p3hb depolymerase
8
fusion proteins
8
hydrolytic activity
8
cloning expression
4
expression characterization
4
characterization poly3-hydroxybutyrate
4
poly3-hydroxybutyrate depolymerase
4
depolymerase marinobacter
4
marinobacter nk-1
4
nk-1 dna
4

Similar Publications

Polyhydroxyalkanoate (PHA) is a highly biodegradable microbial polyester, even in marine environments. In this study, we incorporated an enrichment culture-like approach in the process of isolating marine PHA-degrading bacteria. The resulting 91 isolates were suggested to fall into five genera (, , , , and ) based on 16S rRNA analysis, including two novel genera ( and ) as marine PHA-degrading bacteria.

View Article and Find Full Text PDF

The main aim of the study was to degrade poly-β-hydroxybutyrate (P(3HB)) in the sequencing batch biofilm reactor (SBBR) using biocatalyst. Enrichment method was used for the isolation of P(3HB) degrading bacteria. These bacterial strains were isolated from the wastewater sludge sample treated with P(3HB) sheets.

View Article and Find Full Text PDF

Production of Poly-3-Hydroxybutyrate (P3HB) with Ultra-High Molecular Weight (UHMW) by Mutant Strains of Azotobacter vinelandii Under Microaerophilic Conditions.

Appl Biochem Biotechnol

January 2021

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico.

Poly-3-hydroxybutyrate (P3HB) is a biopolymer, which presents characteristics similar to those of plastics derived from the petrochemical industry. The thermomechanical properties and biodegradability of P3HB are influenced by its molecular weight (MW). The aim of the present study was to evaluate the changes of the molecular weight of P3HB as a function of oxygen transfer rate (OTR) in the cultures using two strains of Azotobacter vinelandii, a wild-type strain OP, and PhbZ1 mutant with a P3HB depolymerase inactivated.

View Article and Find Full Text PDF

Purification and characterization of new bio-plastic degrading enzyme from Burkholderia cepacia DP1.

Protein Expr Purif

March 2019

School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Centre for Chemical Biology, Penang, Malaysia; Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, Malaysia. Electronic address:

Depolymerase is an enzyme that plays an important role in the hydrolysis of polyhydroxyalkanoates [PHAs]. In the current study, Burkholderia cepacia DP1 was obtained from Penang, Malaysia in which the enzyme was purified using ion exchange and gel filtration (Superdex-75) column chromatography. The molecular mass of the enzyme was estimated to be 53.

View Article and Find Full Text PDF

A broad substrate specificity enzyme that can act on a wide range of substrates would be an asset in industrial application. T1 lipase known to have broad substrate specificity in its native form apparently exhibits the same active sites as polyhydroxylalkanoate (PHA) depolymerase. PhaZ6Pl is one of the PHA depolymerases that can degrade semicrystalline P(3HB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!