A versatile solid phase combinatorial approach was developed and utilized for the rapid synthesis of new 2'-O-methylcytidine nucleoside libraries 1-7 containing 672 compounds with 3'-deoxy-3'-C-methyl, 3'-deoxy-3'-C-hydroxymethyl, and 5-alkyl/alkynyl modifications. The modified uridine scaffolds 8-10, 23-25, and 31 were loaded onto the 4-methoxytrityl chloride (MMT-Cl) polystyrene resin through the hydroxyl groups at the 5'-position as well as on the substituents at the 3'- and 5-positions. The scaffolds loaded on the resin were orthogonally protected by MMT group on the resin itself and TBDMS or acetyl protecting groups. The 4-position of the uridine derivatives was activated by 2,4,6-triisopropyl benzene sulfonyl chloride for further derivatization. The resins 14-16, 28-30, and 32 loaded with the corresponding activated scaffolds were reacted with the selected and validated amino building blocks in the 96 well format on the semiautomated synthesizer. The high-quality 2'-O-methylcytidine libraries 1-7 were thus generated and characterized by liquid chromatography-mass spectrometry (LC-MS) analysis with 63-99% successful rates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/cc0300199DOI Listing

Publication Analysis

Top Keywords

2'-o-methylcytidine libraries
8
libraries 1-7
8
synthesis 3'-
4
3'- n4-modified
4
n4-modified 2'-o-methylcytidine
4
libraries solid
4
solid support
4
support versatile
4
versatile solid
4
solid phase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!