Characterization of interactions between Escherichia coli molecular chaperones and immobilized caseins.

Prep Biochem Biotechnol

Department of Nutrition and Food Sciences, Utah State University, Logan, Utah 84322-8700, USA.

Published: November 2003

The molecular chaperones were affinity purified with immobilized alpha-casein (45mg protein/g beads) and beta-casein columns (30 mg protein/g beads) from two heat-induced E. coli strains, NM522 and BL21. After removing nonspecifically bound proteins with 1 M NaCl, the molecular chaperones were eluted with cold water, 1 mM Mg-ATP, or 6 M urea. The eluates from affinity columns were analyzed by SDS-PAGE and Western analysis. Western analysis identified five E. coli molecular chaperones including DnaK, DnaJ, GrpE, GroEL, and GroES in eluates. Among samples, ATP eluates showed the highest chaperone purity of 80-87% followed by cold water eluates with 62-68% purity. The beta-casein column showed a higher chaperone binding capacity than the alpha-casein column. A higher concentration of chaperones was purified from strain BL21 than strain NM522 which may have been due to the lack of lon protease in the BL21 strain.

Download full-text PDF

Source
http://dx.doi.org/10.1081/PB-120025374DOI Listing

Publication Analysis

Top Keywords

molecular chaperones
16
coli molecular
8
protein/g beads
8
cold water
8
western analysis
8
column higher
8
bl21 strain
8
chaperones
5
characterization interactions
4
interactions escherichia
4

Similar Publications

Protein quality control machinery: regulators of condensate architecture and functionality.

Trends Biochem Sci

January 2025

Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA. Electronic address:

Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates.

View Article and Find Full Text PDF

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood.

View Article and Find Full Text PDF

Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Bionano Technology, Gachon University, Seongnam, Korea, Republic of (South).

Background: Clusterin, a multifunctional glycoprotein, is implicated in Alzheimer's disease (AD) pathogenesis due to its roles in Aβ aggregation and clearance. Hence, understanding the specific interactions between Clusterin and Aβ would be a crucial for unraveling AD mechanisms and exploring therapeutic avenues. Previous study reported that clusterin bound with Aβ directly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!