Lyme borreliosis (LB) is a tick-borne spirochetal infection caused by three Borrelia species: Borrelia afzelii, B. garinii, and B. burgdorferi sensu stricto. LB evolves in two stages: a skin lesion called erythema migrans and later, different disseminated forms (articular, neurological, cardiac.). Previous research based on analysis of ospC sequences allowed the definition of 58 groups (divergence of <2% within a group and >8% between groups). Only 10 of these groups include all of the strains isolated from disseminated forms that are considered invasive. The aim of this study was to determine whether or not invasive strains belong to restricted ospC groups by testing human clinical strains isolated from disseminated forms. To screen for ospC genetic diversity, we used single-strand conformation polymorphism (SSCP) analysis. Previously known ospC sequences from 44 different strains were first tested, revealing that each ospC group had a characteristic SSCP pattern. Therefore, we studied 80 disseminated-form isolates whose ospC sequences were unknown. Of these, 28 (35%) belonged to previously known invasive groups. Moreover, new invasive groups were identified: six of B. afzelii, seven of B. garinii, and one of B. burgdorferi sensu stricto. This study confirmed that invasive strains are not distributed among all 69 ospC groups but belong to only 24 groups. This suggests that OspC may be involved in the invasiveness of B. burgdorferi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC262544PMC
http://dx.doi.org/10.1128/JCM.41.11.5059-5065.2003DOI Listing

Publication Analysis

Top Keywords

analysis ospc
12
disseminated forms
12
ospc sequences
12
ospc
9
genetic diversity
8
single-strand conformation
8
conformation polymorphism
8
afzelii garinii
8
garinii burgdorferi
8
burgdorferi sensu
8

Similar Publications

Detection of Borrelia burgdorferi sensu lato by proteomics: a complementary diagnosis tool on erythema migrans biopsies.

Clin Microbiol Infect

January 2025

UR3073-Pathogen-Host- Arthropod Vectors Interactions-Group Borrelia, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France; French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France. Electronic address:

Objectives: We have developed targeted proteomics in the context of Lyme borreliosis (LM) as a new direct diagnostic tool for detecting Borrelia proteins in the skin of patients with erythema migrans. If satisfactory, this proteomic technique could be used in addition to culture and/or PCR for disseminated infections where Borrelia detection is essential to demonstrate active infection. In these infections, the diagnosis is indirect and relies mainly on serology.

View Article and Find Full Text PDF

Lyme disease, caused by and related species is a growing health threat to companion animals across North America and Europe. Vaccination is an important preventive tool used widely in dogs living in, or near, endemic regions. In this report, we assessed anti-outer surface protein (Osp) A and anti-OspC antibody responses in -infected and -naïve mice (C3H/HeN) after immunization with a murine-optimized single dose of the Lyme disease subunit vaccine, Vanguard crLyme.

View Article and Find Full Text PDF

Sigmodontinae rodents as potential reservoirs for Borrelia burgdorferi sensu lato in the Delta and Paraná Islands ecoregion, Argentina.

Med Vet Entomol

October 2024

Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Argentina.

The Borrelia burgdorferi sensu lato (s.l.) complex includes a group of spirochete bacteria that are involved in transmission cycles with vertebrates and the ticks associated with them.

View Article and Find Full Text PDF

Coevolution of parasites with their hosts may lead to balancing selection on genes involved in determining the specificity of host-parasite interactions, but examples of such specific interactions in wild vertebrates are scarce. Here, we investigated whether the polymorphic outer surface protein C (OspC), used by the Lyme disease agent, Borrelia afzelii, to manipulate vertebrate host innate immunity, interacts with polymorphic major histocompatibility genes (MHC), while concurrently eliciting a strong antibody response, in one of its main hosts in Europe, the bank vole. We found signals of balancing selection acting on OspC, resulting in little differentiation in OspC variant frequencies between years.

View Article and Find Full Text PDF

Lyme disease is the most common tick-borne disease in North America. A vaccine for use in humans is not available. Here, we detail the development of two chimeric vaccine antigens, BAF and Chv2M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!