In vitro evaluation of a chemical library of synthetic compounds using two consecutive assays has led to the discovery of fifteen compounds which have the ability to inhibit recombinant Plasmodium falciparum iron superoxide dismutase (PfSOD), suggested as a highly selective target for design of antiparasitic drugs. A large number of compounds were in fact excluded, because they were found to significantly interfere with the components of the assays, thus outlining the drawbacks relative to the use of standard SOD-assays for the research of compounds targeting SODs. The best of the selected compounds showed significant antimalarial activities against two strains of P. falciparum, including a strain moderately resistant to chloroquine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2003.09.011 | DOI Listing |
J Nat Prod
January 2025
Department of Chemical and Biological engineering, School of Engineering and Technology, National University of Mongolia, Ulaanbaatar 14201, Mongolia.
A chemical examination of a root extract of led to the isolation and identification of 23 compounds, including oxazole-type alkaloids and isoflavonoid derivatives. Notably, three oxazole-type alkaloids (, , and ) and two isoflavonoid derivatives ( and ) were obtained from a natural source for the first time. In addition, derived 2,5-diphenyloxazoles and their derivatives were synthesized.
View Article and Find Full Text PDFPLoS Med
January 2025
Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
In this Perspective article, Lorenz von Seidlein outlines the promise of two malaria vaccines, and discusses some of the considerations for their roll out.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.
Background: To understand the emergence and spread of drug-resistant parasites in malaria-endemic areas, accurate assessment and monitoring of antimalarial drug resistance markers is critical. Recent advances in next-generation sequencing (NGS) technologies have enabled the tracking of drug-resistant malaria parasites.
Methods: In this study, we used Targeted Amplicon Deep Sequencing (TADS) to characterise the genetic diversity of the Pfk13, Pfdhfr, Pfdhps, and Pfmdr1 genes among primary school-going children in 15 counties in Kenya (Bungoma, Busia, Homa Bay, Migori, Kakamega, Kilifi, Kirinyaga, Kisii, Kisumu, Kwale, Siaya, Tana River, Turkana, Vihiga and West Pokot).
ACS Sens
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MDMaastricht, The Netherlands.
Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.
View Article and Find Full Text PDFElife
January 2025
Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands.
Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!