Natural organic matter (NOM) in natural water has been found to have negative effects on the adsorption of various trace organic compounds by activated carbon through two major mechanisms: direct competition for sites and pore blockage. In this study, the pore blockage effect of NOM on atrazine adsorption kinetics was investigated. Two types of powdered activated carbon (PAC) and three natural waters were tested to determine the roles of PAC pore size distribution and NOM molecular weight distribution in the pore blockage mechanism. When PAC was preloaded with natural water, the pore blockage effect of the NOM was found to cause a reduction of up to more than two orders of magnitude in the surface diffusion rate of atrazine compared to simultaneous adsorption of atrazine and NOM with fresh PAC. The surface diffusion coefficient of atrazine for preloaded PAC decreased with a decrease in PAC dose or an increase in NOM surface concentration. Because of the pore blockage effect of NOM, a 30% drop in atrazine removal was observed in a continuous flow PAC/microfiltration (MF) system after 7 days of contact compared to the removal predicted from the batch isotherm test. Large micropores and mesopores were found to play an important role in alleviating the effect of pore blockage. A PAC with a relatively large fraction of large micropore and mesopores was shown to suffer much less from the pore blockage effect compared with a PAC that had a much smaller fraction of large pores. Natural waters with different NOM molecular weight distribution caused different extent of pore blockage. The NOM molecules with molecular weight between 200 and 700 Dalton appeared to be responsible for the pore blockage effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2003.08.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!