The thermal isomerization of tricyclo[4.1.0.0(2,7)]heptane and bicyclo[3.2.0]hept-6-ene was studied using ab initio methods at the multiconfiguration self-consistent field level. The lowest-energy pathway for thermolysis of both structures proceeds through the (E,Z)-1,3-cycloheptadiene intermediate. Ten transition states were located, which connect these three structures to the final product, (Z,Z)-1,3-cycloheptadiene. Three reaction channels were investigated, which included the conrotatory and disrotatory ring opening of tricyclo[4.1.0.0(2,7)]heptane and bicyclo[3.2.0]hept-6-ene and trans double bond rotation of (E,Z)-1,3-cycloheptadiene. The activation barrier for the conrotatory ring opening of tricyclo[4.1.0.0(2,7)]heptane to (E,Z)-1,3-cycloheptadiene was found to be 40 kcal mol(-1), while the disrotatory pathway to (Z,Z)-1,3-cyclohetpadiene was calculated to be 55 kcal mol(-1). The thermolysis of bicyclo[3.2.0]hept-6-ene via a conrotatory pathway to (E,Z)-1,3-cycloheptadiene had a 35 kcal mol(-1) barrier, while the disrotatory pathway to (Z,Z)-1,3-cyclohetpadiene had a barrier of 48 kcal mol(-1). The barrier for the isomerization of (E,Z)-1,3-cycloheptadiene to bicyclo[3.2.0]hept-6-ene was found to be 12 kcal mol(-1), while that directly to (Z,Z)-1,3-cycloheptadiene was 20 kcal mol(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo035168s | DOI Listing |
J Phys Chem C Nanomater Interfaces
December 2024
Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, U.K.
Chitosan is a nontoxic biopolymer with many potential biomedical and material applications due to its biodegradability, biocompatibility, and antimicrobial properties. Here, fully atomistic molecular dynamics simulations and enhanced sampling methods have been used to study the adsorption mechanism of chitosan oligomers on a silica surface from an aqueous solution. The free energy of adsorption of chitosan on a silica surface was calculated to be 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of California, Riverside, Chemistry, 501 Big Springs Rd, 92521, Riverside, UNITED STATES OF AMERICA.
Sulfated zirconium oxide (SZO) catalyzes the hydrogenolysis of isotactic polypropylene (iPP, Mn = 13.3 kDa, Đ = 2.4,
J Biomol Struct Dyn
December 2024
Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Taguig City, Philippines.
The Nipah virus (NiV), a highly pathogenic zoonotic virus of the family, poses significant threats with its alarming mortality rates and pandemic potential. Despite historical cases, effective therapeutics remain elusive, prompting urgent exploration of potential antivirals. In this study, a structure-based virtual screening approach was employed to evaluate 690 metabolites sourced from ten medicinal plants () for their antiviral activity against Nipah virus proteins.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Department of PG Studies and Research in Physics Albert Einstein Block UCS Tumkur University, Tumkur Karnataka-572103 India.
In the title compound, CHNO, the torsion angle associated with the phenyl benzoate group is -173.7 (2)° and that for the benz-yloxy group is -174.8 (2)° establishing an -type conformation.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Faculty of Chemistry, University of Łódź, Tamka 12, 91403 Łódź, Poland.
Cofacial arrangement of two Blatter radicals enforced by the -naphthalene scaffold represents a new approach to stable diradicals with strong through-space interactions. Two stereoisomers of the naphthalene-diradicals, and , are investigated by XRD, VT-EPR, UV-vis, electrochemical, kinetic, and DFT methods. In solutions, both stereoisomers exist as open-shell singlets with Δ = -3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!