Thirty subjects with a diagnosis of isolated Raynaud's phenomenon, according to anamnestic and objective criteria, were cross-evaluated by various methods: laser Doppler flowmetry (LDF) during a standardized cold and rewarming test, nailfold capillaroscopy, immunological and other laboratory parameters, to assess the diagnostic and prognostic significance of each method. Correlations were also assessed among disease duration, capillaroscopic pattern score, quantitative digital flow values and laboratory parameters. Nearly 30% of patients showed immunologic abnormalities (ANA positivity at variable titres, ENA, hypocomplementemia, immunocomplexes); 16% of patients had a pathologic capillaroscopic pattern, not well correlated with immunologic findings; a characteristic cold stop reaction of digital flow (partial or total) was detected in 86% of the subjects; in ANA+ pts., ANA titers were positively correlated with the intensity and length of stop reaction (Trec). A significant correlation between digital flow parameters and the capillaroscopic score was also found in each considered group. Our results outline the relevance of LDF, during a standardized thermic test, to evaluate apparently primary RP, because even if a definite scleroderma-like capillaroscopic pattern is absent, this flowmetric method may detect potentially secondary RP patients.
Download full-text PDF |
Source |
---|
Eur Radiol Exp
January 2025
Department of Neuroradiology, University hospital RWTH Aachen, Aachen, Germany.
Background: To define optimal parameters for the evaluation of vessel visibility in intracranial stents (ICS) and flow diverters (FD) using photon-counting detector computed tomography angiography (PCD-CTA) with spectral reconstructions.
Methods: We retrospectively analyzed consecutive patients with implanted ICS or FD, who received a PCD-CTA between April 2023 and March 2024. Polyenergetic, virtual monoenergetic, pure lumen, and iodine reconstructions with different keV levels (40, 60, and 80) and reconstruction kernels (body vascular [Bv]48, Bv56, Bv64, Bv72, and Bv76) were evaluated by two radiologists with regions of interests and Likert scales.
Biosystems
January 2025
ICube Laboratory, UMR 7357, Department of Mechanics, Civil Engineering and Energetics Team - GCE, CNRS, University of Strasbourg, INSA Strasbourg, Department of Architecture, 24 Boulevard de la Victoire, 67084 Strasbourg Cedex, France; MAP-Aria Laboratory, UMR CNRS/MCC 3495, École Nationale Supérieure d'Architecture de Lyon, 3 rue Maurice Audin, BP 170, 69512 Vaulx-en-Velin Cedex, France. Electronic address:
This paper explores the intersections of constructal thermodynamics, and its semantic ontology within the context of autopoetic, digital and computational design in protocell inspired numerical architectural and urban narratives that are examined here as open systems. Constructal law is the thermodynamic theory based on the analysis of fluxes across the border of an open system. Protocells, as dynamic and adaptive open finite size systems, serve in this paper as a compelling metaphor and design model for responsive and sustainable manmade architectural and urban environments.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland. Electronic address:
Human body cells and our daily electronic devices both communicate information within their distinct worlds by regulating the flow of electrons across specified membranes. While electronic devices depend on the flow of electrons generated by conductive materials to communicate within a digital network, biological systems use ion gradients, created in analog biochemical reactions, to trigger biological data transmission throughout multicellular systems. Electrogenetics is an emerging concept in synthetic biology in which electrons generated by digital electronic devices program customized electron-responsive biological units within living cells.
View Article and Find Full Text PDFEmploying free-running laser/envelope detection-based millimeter wave (mmWave) signal generation/detection at remote radio heads (RRHs)/user equipment (UE) offers a cost-effective solution for seamlessly integrating existing intensity modulation-direct detection (IM-DD)-dominated optical access networks and wireless networks. Such fiber-wireless convergence enables a continuous flow of signals with varying characteristics between the baseband unit (BBU) and UE across fiber and wireless network segments without the need for optical-electrical-optical (O-E-O) conversions and digital signal processing (DSP) at intermediate nodes. In this paper, we extensively investigate the performance of such a fiber-wireless converged access network employing free-running laser/envelope detection-based mmWave generation/detection in an IM-DD-based 1.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
Background: Studies on consistency among spirometry, impulse oscillometry (IOS), and histology for detecting small airway dysfunction (SAD) remain scarce. Considering invasiveness of lung histopathology, we aimed to compare spirometry and IOS with chest computed tomography (CT) for SAD detection, and evaluate clinical characteristics of subjects with SAD assessed by these three techniques.
Methods: We collected baseline data from the Early COPD (ECOPD) study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!