Proteomic profiling of primary retinal Müller glia cells reveals a shift in expression patterns upon adaptation to in vitro conditions.

Glia

GSF National Research Center for Environment and Health, Institute of Human Genetics and Ludwig-Maximilian University, Clinical Cooperation Group for Ophthalmogenetics, Munich, Germany.

Published: December 2003

Cultured primary retinal Müller glia cells (RMG), a glia cell spanning the entire neuroretina, have recently gained increased attention, especially with respect to their presumed in vivo role in supporting photoreceptor function and survival. Cultured RMG cells, however, are at risk to lose much of their in vivo features. To determine the conditions of isolated primary RMG cells best corresponding with their physiological role in the intact retina, we profiled the respective proteomes of RMG freshly isolated from intact pig eye, as well as from cultured material at different timepoints. Protein samples were separated by high-resolution two-dimensional electrophoresis (2-DE), and isolated proteins were identified by matrix-assisted laser desorption ionization time-of- flight (MALDI-TOF) peptide mass fingerprint. Compared with freshly isolated RMG, the in vitro protein expression patterns remain relatively stable for the first 3 days in culture but change dramatically thereafter. Proteins involved in specific RMG physiological functions, such as glycolysis, transmitter recycling, CO2 siphoning, visual pigment cycle, and detoxification, are either downregulated or absent. In contrast, cytoskeletal proteins, as well as proteins involved in motility and in proliferation, are upregulated during culture. In the present report, we show for the first time, on a systematic level, that profound changes in the RMG proteome reflect transdifferentiation from a multifunctional, highly differentiated glial cell to a dedifferentiated fibroblast-like phenotype in culture.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.10292DOI Listing

Publication Analysis

Top Keywords

primary retinal
8
retinal müller
8
müller glia
8
glia cells
8
expression patterns
8
rmg cells
8
freshly isolated
8
proteins involved
8
rmg
7
proteomic profiling
4

Similar Publications

Aims: To compare the efficiency of scleral buckling (SB) and pars plana vitrectomy (PPV) with or without SB in patients with primary simple phakic fovea-splitting rhegmatogenous retinal detachment (RRD).

Methods: A retrospective case-control study included 101 patients aged <55 years diagnosed with phakic fovea-splitting RRD. The primary outcome was functional success, defined as achieving a postoperative logarithm of the minimum angle of resolution best-corrected visual acuity of 0.

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

Purpose: To assess longitudinal changes in optical quality across the periphery (horizontal meridian, 60°) in young children who are at high (HR) or low risk (LR) of developing myopia, as well as a small subgroup of children who developed myopia over a 3-year time frame.

Methods: Aberrations were measured every 6 months in 92 children with functional emmetropia at baseline. Children were classified into HR or LR based on baseline refractive error and parental myopia.

View Article and Find Full Text PDF

Inherited retinal diseases (IRDs) constitute a heterogeneous group of clinically and genetically diverse conditions, standing as a primary cause of visual impairment among individuals aged 15-45, with an estimated incidence of 1:2000. Our study aimed to comprehensively evaluate the genetic variants underlying IRDs in the Turkish population. This study included 50 unrelated Turkish IRD patients and their families.

View Article and Find Full Text PDF

Omega-3 fatty acids are critical components of cell membranes, including those in the retina. Specifically, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the primary omega-3 fatty acids that have been studied for their potential benefits in retinal health, preventing the progression of retinopathy. Several studies have shown that a higher intake of omega-3 fatty acids is associated with a lower risk of developing diabetic retinopathy and age-related macular degeneration (AMD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!