In experimental autoimmune encephalomyelitis, the acute phase of the disease is produced by T-helper lymphocyte type 1 (TH1), which produces mainly TNFalpha and IFNgamma. Recovery from the disease is mediated by T-helper lymphocyte types 2 and 3 (TH2/TH3), which, among other cytokines, produce transforming growth factor beta (TGFbeta). To address the influence of TGFbeta on TH1-induced gene expression, microarray technology was used on murine primary microglial cells stimulated with IFNgamma and TNFalpha in the absence or presence of TGFbeta. The resulting data from an investigation of up to 5,500 genes provided the notion that TGFbeta prevents the induction of a proinflammatory gene program within microglia exposed to a TH1 milieu. TH1 cytokines upregulated 175 genes comprising cytokine, chemokine, and genes involved in host response to infection and the TNFalpha/IFNgamma intracellular signaling pathway. It is observed that TGFbeta inhibits expression of 25% of the TNFalpha/IFNgamma-induced genes and a further 66 TNFalpha/IFNgamma-independent genes. The focus of TGFbeta inhibition is observed to be directed in genes involved in chemotaxis (IL-15, CXCL1, CXCL2, CCL3, CCL4, CCL5, CCL9), chemokine receptors (CCR5, CCR9), LIF receptor, and FPR2, and on genes mediating cell migration (MMP9, MMP13, MacMARCKS, endothelin receptor B, Ena/VASP, Gas7), apoptosis (FAS, TNF, TNF receptor, caspase-1 and -11), and host response to infection (toll-like receptor 6, Mx-1, and MARCO). Taken collectively, the data strongly suggest that one of the main effects of TGFbeta is to impair cell entry into the CNS and to hinder migration of microglia in the CNS parenchyma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/glia.10286 | DOI Listing |
iScience
January 2025
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.
View Article and Find Full Text PDFiScience
January 2025
Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.
View Article and Find Full Text PDFiScience
January 2025
Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.
View Article and Find Full Text PDFOver the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.
View Article and Find Full Text PDFJ Clin Exp Hepatol
December 2024
Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.
Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.
Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!