Several structural domains contribute to the regulation of N-type calcium channel inactivation by the beta 3 subunit.

J Biol Chem

Department of Physiology and Biophysics. Cellular and Molecular Neurobiology Research Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada.

Published: January 2004

Calcium channel beta subunits are essential regulatory elements of the gating properties of high voltage-activated calcium channels. Co-expression with beta(3) subunits typically accelerates inactivation, whereas co-expression with beta(4) subunits results in a slowly inactivating phenotype. Here, we have examined the molecular basis of the differential effect of these two subunits on the inactivation characteristics of Ca(v)2.2 + alpha(2)-delta(1) N-type calcium channels by creating a series of 22 chimeric beta subunits that are based on various combinations of variable and conserved regions of the parent beta subunit isoforms. Our data show that replacement of the N terminus region of beta(4) with a corresponding 14-amino acid stretch of beta(3) sequence accelerates the inactivation kinetics to levels seen with wild type beta(3). A similar kinetic speeding is observed by a concomitant substitution of the second conserved and variable regions, but not when these regions are substituted individually, suggesting that 1) the second variable and conserved regions cooperatively regulate N-type calcium channel inactivation and 2) that there are two redundant mechanisms that allow the beta(3) subunit to accelerate N-type channel inactivation. In contrast with previous reports in Ca(v)2.1 calcium channels, deletion of the C-terminal region of Ca(v)2.2 did not alter the regulation of the channel by wild type and chimeric beta subunits. Hence, the molecular underpinnings of beta subunit regulation of voltage-gated calcium channels appear to vary with calcium channel subtype.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M308991200DOI Listing

Publication Analysis

Top Keywords

calcium channel
16
calcium channels
16
n-type calcium
12
channel inactivation
12
beta subunit
12
beta subunits
12
calcium
8
accelerates inactivation
8
chimeric beta
8
variable conserved
8

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

The Molecular Biology of Placental Transport of Calcium to the Human Foetus.

Int J Mol Sci

January 2025

Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK.

From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca concentration.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).

View Article and Find Full Text PDF

Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.

Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!