The LIM domain protein Lmo2 and the basic helix-loop-helix transcription factor Scl/Tal1 are expressed in early haematopoietic and endothelial progenitors and interact with each other in haematopoietic cells. While loss-of-function studies have shown that Lmo2 and Scl/Tal1 are essential for haematopoiesis and angiogenic remodelling of the vasculature, gain-of-function studies have suggested an earlier role for Scl/Tal1 in the specification of haemangioblasts, putative bipotential precursors of blood and endothelium. In zebrafish embryos, Scl/Tal1 can induce these progenitors from early mesoderm mainly at the expense of the somitic paraxial mesoderm. We show that this restriction to the somitic paraxial mesoderm correlates well with the ability of Scl/Tal1 to induce ectopic expression of its interaction partner Lmo2. Co-injection of lmo2 mRNA with scl/tal1 dramatically extends its effect to head, heart, pronephros and pronephric duct mesoderm inducing early blood and endothelial genes all along the anteroposterior axis. Erythroid development, however, is expanded only into pronephric mesoderm, remaining excluded from head, heart and somitic paraxial mesoderm territories. This restriction correlates well with activation of gata1 transcription and co-injection of gata1 mRNA along with scl/tal1 and lmo2 induces erythropoiesis more broadly without ventralising or posteriorising the embryo. While no ectopic myeloid development from the Scl/Tal1-Lmo2-induced haemangioblasts was observed, a dramatic increase in the number of endothelial cells was found. These results suggest that, in the absence of inducers of erythroid or myeloid haematopoiesis, Scl/Tal1-Lmo2-induced haemangioblasts differentiate into endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.00875DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
somitic paraxial
12
paraxial mesoderm
12
lmo2 scl/tal1
8
haemangioblasts differentiate
8
differentiate endothelial
8
cells absence
8
scl/tal1 induce
8
correlates well
8
mrna scl/tal1
8

Similar Publications

Protocol to generate a 3D atherogenesis-on-chip model for studying endothelial-macrophage crosstalk in atherogenesis.

STAR Protoc

January 2025

Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:

The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.

View Article and Find Full Text PDF

Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.

View Article and Find Full Text PDF

Protocol for differentiating hematopoietic progenitor cells from human pluripotent stem cells in chemically defined monolayer culture.

STAR Protoc

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China. Electronic address:

Human pluripotent stem cells (hPSCs) provide a powerful platform for generating hematopoietic progenitor cells (HPCs) and investigating hematopoietic development. Here, we present a protocol for maintaining hPSCs and inducing their differentiation into HPCs through the endothelial-to-hematopoietic transition (EHT) on vitronectin-coated plates. We outline steps for evaluating the efficiency of HPC generation and assessing their potential to differentiate into various hematopoietic lineages.

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!