Population structure of Alexandrium (Dinophyceae) cyst formation-promoting bacteria in Hiroshima Bay, Japan.

Appl Environ Microbiol

Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University, Kochi 783-8502, Japan.

Published: November 2003

A total of 31 bacterial isolates that have potential Alexandrium cyst formation-promoting activity (Alex-CFPB) were isolated from Hiroshima Bay (Japan), which is characterized by seasonal blooms of the toxic dinoflagellate Alexandrium tamarense. The population structure of Alex-CFPB was analyzed by means of restriction fragment length polymorphism analysis of the 16S rRNA genes (16S rDNA). Fourteen ribotypes, A to N, were observed among the 31 isolates of Alex-CFPB by using four restriction enzymes, MboI, HhaI, RsaI and BstUI. Among them, seven isolates, which were obtained from the seawater samples taken during the peak and termination periods of the A. tamarense bloom in 1998, belonged to ribotype A. This result suggests that bacterial strains of ribotype A may be dominant in the Alex-CFPB assemblages during these periods. The partial 16S rDNA-based phylogenetic tree of 10 ribotypes studied showed that nine of them fell into the Rhodobacter group of the alpha subclass of the Proteobacteria: Eight of nine ribotypes of the Rhodobacter group fell into the lineage of the Roseobacter subgroup, and one fell into the Rhodobacter subgroup. The non-Rhodobacter group type fell into the Marinobacterium-Neptunomonas-Pseudomonas group of the gamma-Proteobacteria: Isolates of Alex-CFPB ribotypes A and C do not have clear growth-promoting activities but have strong cyst formation-promoting activities (CFPAs) under our laboratory conditions. These results show that the Alex-CFPB assemblage may consist of various bacteria that belong mainly to the Roseobacter group and have strong CFPAs. These results suggest that not only the Alexandrium cyst formation-inhibiting bacteria (Alex-CFIB) reported previously but also Alex-CFPB, especially bacteria of ribotype A, may play significant roles in the process of encystment and bloom dynamics of Alexandrium in the natural environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC262264PMC
http://dx.doi.org/10.1128/AEM.69.11.6560-6568.2003DOI Listing

Publication Analysis

Top Keywords

cyst formation-promoting
12
population structure
8
hiroshima bay
8
bay japan
8
alexandrium cyst
8
isolates alex-cfpb
8
fell rhodobacter
8
rhodobacter group
8
alex-cfpb
7
alexandrium
5

Similar Publications

The energetic demands of proliferating cells during tumorigenesis require close coordination between the cell cycle and metabolism. While CDK4 is known for its role in cell proliferation, its metabolic function in cancer, particularly in triple-negative breast cancer (TNBC), remains unclear. Our study, using genetic and pharmacological approaches, reveals that CDK4 inactivation only modestly impacts TNBC cell proliferation and tumor formation.

View Article and Find Full Text PDF

Toxin production in bloom-forming, harmful alga Alexandrium pacificum (Group IV) is regulated by cyst formation-promoting bacteria Jannaschia cystaugens NBRC 100362.

Water Res

December 2024

Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

Harmful algal blooms (HABs) caused by dinoflagellates like Alexandrium pacificum pose significant ecological and public health risks due to their production of paralytic shellfish toxins (PSTs). Bacterial populations, particularly Alexandrium cyst formation-promoting bacteria (Alex-CFPB), are known to significantly influence growth, encystment, toxin synthesis, the composition of toxic components, and bloom dynamics of these dinoflagellates. However, the role of Alex-CFPB in Alexandrium toxin synthesis and the mechanisms thereof are still unclear.

View Article and Find Full Text PDF

Stem cells (SCs) and not progenitors (Ps) act as cells of origin of Basal Cell Carcinoma (BCC). The mechanisms promoting BCC formation in SCs or restricting tumour development in Ps are currently unknown. In this study, we transcriptionally profiled SCs and Ps and found that Survivin, a pleiotropic factor that promotes cell division and inhibits apoptosis was preferentially expressed in SCs.

View Article and Find Full Text PDF

Endometrial cancer (EC), one of the most prevalent carcinomas in females, is associated with increasing mortality. We identified the CHD4 R975H mutation as a high-frequency occurrence in EC patients through a comprehensive survey of EC databases. Computational predictions suggest that this mutation profoundly impacts the structural and functional integrity of CHD4.

View Article and Find Full Text PDF

NQO1 Triggers Neutrophil Recruitment and NET Formation to Drive Lung Metastasis of Invasive Breast Cancer.

Cancer Res

November 2024

Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.

Metastasis to the lungs is a leading cause of death for patients with breast cancer. Therefore, effective therapies are urgently needed to prevent and treat lung metastasis. In this study, we uncovered a mechanism by which NAD(P)H:quinone oxidoreductase 1 (NQO1) orchestrates lung metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!