A seminested reverse transcription-PCR method coupled to membrane filtration was optimized to investigate the presence of norovirus (NV) RNA sequences in bottled and natural mineral waters. The recovery of viral particles by filtration varied between 28 and 45%, while the limit of detection of the overall method ranged from 6 to 95 viral particles. The assay was broadly reactive, as shown by the successful detection of 27 different viral strains representing 12 common genotypes of NVs. A total of 718 bottled and natural mineral water samples were investigated, including 640 samples of finished, spring, and line products (mostly 1 to 1.5 liters), collected from 36 different water brands of various types and from diverse geographic origins over a 2-year period. In addition, 78 samples of larger volume (10 and 400 to 500 liters) and environmental swabs were investigated. From the 1,436 analyses that were performed for the detection of NVs belonging to genogroups I and II, 34 samples (2.44%) were presumptively positive by seminested RT-PCR. However, confirmation by DNA sequence analysis revealed that all presumptive positive results were either due to nonspecific amplification or to cross-contamination. In conclusion, these results do not provide any evidence for the presence of NV genome sequences in bottled waters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC262324PMC
http://dx.doi.org/10.1128/AEM.69.11.6541-6549.2003DOI Listing

Publication Analysis

Top Keywords

bottled natural
12
natural mineral
12
reverse transcription-pcr
8
mineral waters
8
sequences bottled
8
viral particles
8
transcription-pcr analysis
4
bottled
4
analysis bottled
4
waters presence
4

Similar Publications

Identifying macroplastic deposition hotspots in rivers is essential for planning cleanup efforts and assessing the risks to aquatic life and the aesthetic value of river landscapes. Recent fieldwork in mountain rivers has shown that wood jams retain significantly more macroplastic than other emergent surfaces within river channels. Here, we experimentally verify these findings by tracking the deposition of 64 PET bottles after 52-65 days of transport in the mid-mountain Skawa River (Polish Carpathians) under low to medium flow conditions.

View Article and Find Full Text PDF

The range of the oriental latrine fly (Chrysomya megacephala) is currently expanding. It coexists with another blowfly with a similar ecology, the green bottle fly (Lucilia sericata), one of the most abundant species in carrion during warm months. It is essential to understand the influence of temperature, larval substrate type, and larval competition on the development rates of these necrophagous calliphorids to evaluate the role and the adaptation of C.

View Article and Find Full Text PDF

Background: Synergists reduce insecticide metabolism in mosquitoes by competing with insecticides for the active sites of metabolic enzymes, such as cytochrome P450s (CYPs). This increases the availability of the insecticide at its specific target site. The combination of both insecticides and synergists increases the toxicity of the mixture.

View Article and Find Full Text PDF

Background: Diarrheal diseases remain a critical public health challenge, particularly for children under five in low- and middle-income countries such as Somalia. This study aimed to assess the prevalence and determinants of diarrhea in this vulnerable population, utilizing data from the 2020 Somalia Demographic and Health Survey.

Methods: This investigation employed secondary data from the 2020 Somalia Demographic and Health Survey.

View Article and Find Full Text PDF

Stable H-O and radiogenic Sr isotopic compositions of bottled water in South Korea were investigated to trace water origins and to elucidate hydrogeochemical water-rock interactions within aquifers. Eighty-one bottled water samples were collected across the country. The δD and δO values, and Sr/Sr ratios and Sr contents of groundwater-sourced bottled water samples were in the ranges of -68 to -40 ‰, -10 to -7 ‰, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!