In humans, nonstarch polysaccharides (NSP), such as arabinoxylans (AX), are not digested in the upper gut and provide fermentable carbon sources for bacteria growing in the large bowel. Despite the ubiquity of AX in nature, the microbiologic and physiologic consequences of AX digestion in the gut are poorly understood. In this study, we investigated the breakdown of ferulic acid-cross-linked AX (AXF) and non-cross-linked AX in children's intestinal microbiotas, using starch as a readily fermentable polysaccharide for comparative purposes. The experiments were performed using pH-controlled fermentation vessels under anaerobic conditions. The results demonstrated that there was variation in the metabolism of these polysaccharides by colonic microbiotas. AX was always degraded more slowly than starch, while ferulic acid cross-linking reduced the rate of AX fermentation, as shown by fermentation product measurements. Starch digestion was associated with significant acetate and butyrate production, whereas AX breakdown resulted in increased propionate formation. In general, the presence of fermentable carbohydrate significantly increased the total anaerobe counts and eubacterial rRNA concentrations (P < 0.01), while non-cross-linked AX digestion was principally associated with increased viable counts of Bacteroides fragilis group organisms, which was supported by increases in Bacteroides-Porphyromonas-Prevotella group rRNA (P < 0.01). Starch was considerably more bifidogenic than AX in these fermentations. In conclusion, in this study we found that the effects of AX and AXF on the microbial ecology and metabolism of intestinal microbiotas are similar in children and adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC262271PMC
http://dx.doi.org/10.1128/AEM.69.11.6354-6360.2003DOI Listing

Publication Analysis

Top Keywords

intestinal microbiotas
8
degradation cross-linked
4
cross-linked non-cross-linked
4
non-cross-linked arabinoxylans
4
arabinoxylans intestinal
4
intestinal microbiota
4
microbiota children
4
children humans
4
humans nonstarch
4
nonstarch polysaccharides
4

Similar Publications

Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.

View Article and Find Full Text PDF

Pumpkin extract has been shown to alleviate hyperglycemic symptoms by improving glucose metabolism disorders. However, the specific active components responsible for its hypoglycemic effects and the underlying molecular mechanisms remain unclear. In this study, db/db mice underwent a 4-week dietary intervention with two pumpkin flours (PF1 and PF2), total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF), with acarbose serving as a positive control.

View Article and Find Full Text PDF

Intrapancreatic fat deposition (IPFD) has garnered increasing attention in recent years. The prevalence of IPFD is relatively high and associated with factors such as obesity, age, and sex. However, the pathophysiological mechanisms underlying IPFD remain unclear, with several potential contributing factors, including oxidative stress, alterations in the gut microbiota, and hormonal imbalances.

View Article and Find Full Text PDF

Inflammatory bowel disease, particularly Crohn's disease (CD), has been linked to modifications in mesenteric adipose tissue (MAT) and the phenomenon known as "creeping fat" (CrF). The presence of CrF is believed to serve as a predictor for early clinical recurrence following surgical intervention in patients with CD. Notably, the incorporation of the mesentery during ileocolic resection for CD has been correlated with a decrease in surgical recurrence, indicating the significant role of MAT in the pathogenesis of CD.

View Article and Find Full Text PDF

Bowel preparation before colonoscopy: Consequences, mechanisms, and treatment of intestinal dysbiosis.

World J Gastroenterol

January 2025

Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China.

The term "gut microbiota" primarily refers to the ecological community of various microorganisms in the gut, which constitutes the largest microbial community in the human body. Although adequate bowel preparation can improve the results of colonoscopy, it may interfere with the gut microbiota. Bowel preparation for colonoscopy can lead to transient changes in the gut microbiota, potentially affecting an individual's health, especially in vulnerable populations, such as patients with inflammatory bowel disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!