Enterohemorrhagic Escherichia coli are harmful human pathogens capable of causing bloody diarrhea and vomiting. An important serotype commonly associated with human illness is the E. coli O157:H7 serotype. Unlike other real-time polymerase chain reaction (PCR) methods for identifying E. coli O157:H7, this study describes the development and optimization of a real-time PCR method targeting a conserved point mutation at +93 in the uidA (gusA) gene that is unique to O157:H7, distinguishing it from non-O157:H7 serotypes. A TET-labeled Minor Groove Binder (MGB) DNA probe was designed for use in a 5' nuclease PCR assay. Using a panel of two E. coli O157:H7 strains, three E. coli non-O157:H7 strains, and one non-E. coli species, the assay was optimized for the specific detection of the E. coli O157:H7 strains. Optimal conditions were identified at high anneal/extend temperatures, low magnesium concentrations, and low probe concentrations, resulting in correct identification of E. coli O157:H7 and non-O157:H7 strains. The improved specificity of MGB probes for single base pair mismatches such as the +93 uidA mutation provides a novel approach towards rapid identification of E. coli O157:H7.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcp.2003.07.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!