Field trials were conducted to measure translocation of pesticides by summer and winter forage/pasture species from soil containing aged residues of heptachlor and, to a lesser extent, dieldrin. Substantial amounts of heptachlor epoxide, and lesser amounts of gamma-chlordane were translocated to plants from contaminated soil. Residue levels varied with crop species and stage of plant development. In summer crops residues were higher in soybean > cowpeas > lab-lab > Sorghum > millet > sweet saccaline at the grazing and mature stages. Compared to glasshouse studies undertaken previously, residues in crops grown under field conditions were much lower. This apparently reflects the lower soil moisture levels and the reduced rates of translocation. Heptachlor residues in winter crops were highest in Saia oats > Berseem clover > Haifa clover > Cassia oats > Tetila ryegrass > Schooner barley > Shaftal clover > Hunter river lucerne at the grazing stage. There were no detectable levels in barley and oats at the mature stage. No dieldrin residues were translocated into the various crop species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03601239209372808 | DOI Listing |
Lab Chip
January 2025
Applied Stem Cell Technologies Group, Department of Bioengineering Technologies, University of Twente, Enschede, The Netherlands.
The retina is a complex and highly metabolic tissue in the back of the eye essential for human vision. Retinal diseases can lead to loss of vision in early and late stages of life, significantly affecting patients' quality of life. Due to its accessibility for surgical interventions and its isolated nature, the retina is an attractive target for novel genetic therapies and stem cell-based regenerative medicine.
View Article and Find Full Text PDFHeliyon
January 2025
Information Technology Department, Technical College of Informatics-Akre, Akre University for Applied Sciences, Kurdistan Regain, Iraq.
Deep Learning (DL) has significantly contributed to the field of medical imaging in recent years, leading to advancements in disease diagnosis and treatment. In the case of Diabetic Retinopathy (DR), DL models have shown high efficacy in tasks such as classification, segmentation, detection, and prediction. However, DL model's opacity and complexity lead to errors in decision-making, particularly in complex cases, making it necessary to estimate the model's uncertainty in predictions.
View Article and Find Full Text PDFFront Neurol
January 2025
14th European Reference Network in Neuromuscular Disorders (EURO-NMD), Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia.
Background: Charcot-Marie-Tooth disease (CMT), a slowly advancing hereditary nerve disorder, presents a significant challenge in the medical field. Effective drugs for treatment are lacking, and we struggle to find sensitive markers to track the disease's severity and progression. In this study, our objective was to investigate the levels of neurofilament light chain (NfL), glial fibrillary acid protein (GFAP), fibroblast growth factor 21 (FGF-21) and growth differentiation factor 15 (GDF-15) in individuals with CMT and to compare them to a control group.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Background: Alzheimer's disease (AD) is a common neurodegenerative disorder worldwide and the using of magnetic resonance imaging (MRI) in the management of AD is increasing. The present study aims to summarize MRI in AD researches via bibliometric analysis and predict future research hotspots.
Methods: We searched for records related to MRI studies in AD patients from 2004 to 2023 in the Web of Science Core Collection (WoSCC) database.
Acc Mater Res
January 2025
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.
Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!