The Instituto Nacional de Astrofísica, Optica y Electrónica in Mexico and the University of Massachusetts in the U.S.A. are collaborating to build the world's largest radio telescope that operates at short millimeter wavelengths. This facility, known as the Large Millimeter Telescope (LMT) or el Gran Telescopio Milimétrico (GTM), is being sited at an altitude of 4600 m on Volcan Sierra Negra in the Mexican state of Puebla. The telescope will be a fully steerable dish with a diameter of 50 m and a surface consisting of 180 panels that are actively adjusted under computer control to correct for deformations due to gravity and temperature gradients. Instruments will include focal plane arrays to image both continuum and spectral line emission from celestial sources. The LMT/GTM will be an extremely powerful facility for studies encompassing almost all areas of astronomy, including astrobiology. In particular, the high sensitivity, angular resolution, and mapping speed will enable detailed investigations of the organic chemistry of interstellar molecular clouds, protoplanetary disks, and comets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1025732428637 | DOI Listing |
J Allergy Clin Immunol
January 2025
Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN.
Background: Studies of human IgE and its targeted epitopes on allergens have been very limited. We have an established method to immortalize IgE encoding B cells from allergic individuals.
Objective: To develop an unbiased and comprehensive panel of peanut-specific human IgE mAbs to characterize key immunodominant antigenic regions and epitopes on peanut allergens to map the molecular interactions responsible for inducing anaphylaxis.
Adv Sci (Weinh)
January 2025
CNRS, Univ. Bordeaux, CRPP, UMR 5031, Pessac, F-33600, France.
Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada.
Spectra of the weakly bound H2O-O2 dimer are studied in the region of the H2O ν2 band using a tunable quantum cascade laser to probe a pulsed supersonic slit jet expansion. These are the first gas-phase infrared spectra of H2O-O2 and among only a few such results for O2-containing complexes. Almost 100 infrared lines are assigned based on the ground state combination differences from the microwave spectrum of H2O-O2.
View Article and Find Full Text PDFSci Rep
January 2025
Terahertz Research Section, Electronics and Telecommunications Research Institute, Deajeon, 34129, Republic of Korea.
The complex dynamics of terahertz (THz) wave scattering by subwavelength-scale structures remain largely unexplored. This article examines the spectral scattering characteristics of subwavelength-sized spherical particles probed by tightly focused THz waves through numerical simulations and experimental techniques. The simulations reveal that the scattering intensity for lower Mie resonance modes (magnetic dipole and electric dipole modes) remains largely unaffected when THz waves are focused down to 0.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCAS), Beijing 100094, China.
Pulse signals can serve as important indicators of one's cardiovascular condition. However, capturing signals with stable morphology using radar under varying measurement periods remains a significant challenge. This paper reports a non-contact arterial pulse measurement method based on mmWave radar, with stable signals achieved through a range-angle focusing algorithm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!