Hypothesis: This study investigates the function of the diastrophic dysplasia sulfate transporter (DTDST) in otosclerotic bone and the effect on it of sodium fluoride (NaF).
Background: Otosclerosis is a localized bone dystrophy with increased bone turnover. DTDST is implicated in the regulation of the bone turnover.
Materials And Methods: Primary cultures of cells were obtained from the stapes and external auditory canal (EAC) of 26 patients with otosclerosis and from nine control patients. Sulfate uptake was quantified under basal conditions and with NaF. The NaF signaling pathways were investigated using forskolin and verapamil.
Results: The relative initial rates of sulfate uptake and the apparent Vmax values were: otosclerotic stapes > EAC > control stapes = control EAC. The sulfate uptake by the otosclerotic stapes was correlated with the loss of sensorineural hearing. The amounts of DTDST mRNA (RNase protection assay) in the four subgroups did not differ. NaF (10(-6)M, 1 hr) inhibited sulfate uptake by the otosclerotic stapes and EAC cells but not by control samples.
Conclusion: The authors believe that whether the increased DTDST activity is a cause or an effect of otosclerosis, it appears to be a specific target for NaF treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00129492-200311000-00005 | DOI Listing |
J Environ Qual
January 2025
Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Maintaining yield goals while reducing nitrate-nitrogen (NO-N) leaching to groundwater is a challenge for potato (Solanum tuberosum) production in the Wisconsin Central Sands as well as across the United States. The objectives of this study were to quantify the effect of conventional and enhanced efficiency nitrogen (N) fertilizers on NO-N leaching, crop yield, and N uptake in potatoes. We compared five N treatments, which include a 0 N control and 280 kg ha as ammonium sulfate and ammonium nitrate (AS/AN), polymer-coated urea (PCU), urea with a urease inhibitor (Urea+UI), or urea with a UI and a nitrification inhibitor (Urea+UI+NI).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, Oregon 97331, United States.
Significant variation in mercury (Hg) bioaccumulation is observed across the diversity of freshwater ecosystems in North America. While there is support for the major drivers of Hg bioaccumulation, the relative influence of different external factors can vary widely among waterbodies, which makes predicting Hg risk across large spatial scales particularly challenging. We modeled Hg bioaccumulation by coupling Hg concentrations in more than 21,000 dragonflies collected across the United States from 2008 to 2021 with a suite of chemical (e.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Arts and Science, Turkey Suleyman Demirel University, Faculty of Arts and Science, 32260 Isparta, Turkey.
Poly(lactic) (PLA) is a biodegradable material obtained from renewable resources and is recognized as a safe biopolymer by the Food and Drug Administration. PLA expresses excellent mechanical and moldability attributes nonetheless poor elasticity/functionality limits its widespread utilization. One approach to compensate for this is chemical surface modification through free radical grafting with small organic molecules like maleic anhydride (MA).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Unit on Computational Biology and Drug Design, Children's Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico.
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake.
View Article and Find Full Text PDFMicroorganisms
December 2024
Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
Sulfidogenic bacteria cause numerous issues in the oil industry since they produce sulfide, corroding steel equipment, reducing oil quality, and worsening the environmental conditions in oil fields. The purpose of this work was to isolate and taxonomically identify the sulfidogenic bacteria responsible for the corrosion of steel equipment at the Karazhanbas oil field (Kazakhstan). In this study, we characterized five sulfidogenic strains of the genera , , and isolated from the formation water of the Karazhanbas oil field (Kazakhstan).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!