Intestinal absorption of peptides in linear form has been studied extensively, but there is little knowledge of peptides in a cyclic form. In this report, intestinal absorption of cyclic phenylalanylserine (cyclo(Phe-Ser)), a precursor of gliotoxin, was studied in isolated rat small intestine as a model cyclic dipeptide. Absorption clearance (CLabs) decreased in the presence of glycylsarcosine, cephalexin or cephradine, substrates for H+/oligopeptide cotransporter (PEPT1). CLabs of cyclo(Phe-Ser) also decreased at 4 degrees C, thus indicating that cyclo(Phe-Ser) is in part transported by PEPT1. However, the Eadie-Hofstee plot of absorption revealed an atypical profile at lower concentrations of cyclo(Phe-Ser) (around 0.1 mM). Moreover, comparative experiments of absorptive and excretive transport showed that excretive transport from the serosal to mucosal side of isolated intestinal tissue at a 0.1 mM cyclo(Phe-Ser) was superior to absorptive transport from the mucosal side to the serosal side, and vice versa at a 1 mM cyclo(Phe-Ser). A kinetic model was constructed, in which cyclo(Phe-Ser) concentration for excretive transport was assumed to be at the binding site of excretive transporter, but not the unbound cytoplasmic concentration. These results as well as the results of kinetic analysis indicate that intestinal absorption consists of passive transport, carrier-mediated absorptive transport by PEPT1 and carrier-mediated excretive transport, resulting in atypical absorption. Although cyclic dipeptides have potentials as drugs, their intestinal absorption may be complex. The results of this study lead us to conclude that absorptive and excretive transport by the small intestine acts as an interface between the body and ingested compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.26.1625 | DOI Listing |
Kidney360
January 2025
Unicycive Therapeutics, Los Altos, CA, United States.
Background: This study evaluated the combined effects of oxylanthanum carbonate (OLC), an investigational phosphate binder, and tenapanor, an approved sodium/hydrogen exchanger 3 (NHE3) inhibitor that reduces paracellular phosphate absorption, on urinary phosphate excretion in rats on a high phosphorus diet.
Methods: Sixty-four male Sprague Dawley rats were randomized into eight groups: vehicle; tenapanor (0.15 mg/kg) only; OLC (0.
Assay Drug Dev Technol
January 2025
Institute of Pharmaceutical Research, GLA University, Mathura, India.
Front Immunol
January 2025
Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, China.
The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.
Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (), observing significant morphological and transcriptomic alterations.
View Article and Find Full Text PDFFront Microbiol
January 2025
Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia.
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!