A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Specific sorting of the a1 isoform of the V-H+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. | LitMetric

Vacuolar H+ATPase (V-ATPase) accumulates protons inside various intracellular organelles, generating the electrochemical proton gradient required for many vital cellular processes. V-ATPase is a complex enzyme with many subunits that are organized into two domains. The membrane domain that translocates protons contains a proteolipid oligomer of several c subunits and a 100 kDa a subunit. Several a-subunit isoforms have been described that are important for tissue specificity and targeting to different membrane compartments, and could also result in the generation of V-ATPases with different functional properties. In the present report, we have cloned the Torpedo marmorata a1 isoform. This isoform was found to be addressed specifically to nerve endings, whereas VATPases in the neuron cell bodies contain a different a-subunit isoform. In nerve terminals, the V-ATPase membrane domain is present not only in synaptic vesicles but also in the presynaptic plasma membrane, where its density could reach 200 molecules microm(-2). This V-ATPase interacts with VAMP-2 and with the SNARE complexes involved in synaptic vesicle docking and exocytosis.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.00791DOI Listing

Publication Analysis

Top Keywords

nerve terminals
8
synaptic vesicles
8
vesicles presynaptic
8
presynaptic plasma
8
plasma membrane
8
membrane domain
8
membrane
5
specific sorting
4
isoform
4
sorting isoform
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!