Cholinergic deficits in Alzheimer's disease are accompanied by a number of alterations in other transmitter systems including glutamate, noradrenaline and serotonin, suggesting the involvement also of other neurotransmitter systems in the pathogenesis of the disease. To address the question whether beta-amyloid may contribute to these deficits, brain tissue from transgenic Tg2576 mice with Alzheimer plaque pathology at ages of 5 (still no significant plaque load) and 17 months (moderate to high cortical beta-amyloid plaque load) were examined for a number of cholinergic and non-cholinergic markers. Transgenic mice with no significant plaque load demonstrated reduced hemicholinium-3 (HCh-3) binding to choline uptake sites in anterior brain regions as compared to non-transgenic littermates, while in aged transgenic mice with high number of plaque deposits decreased HCh-3 binding levels were accompanied by increased vesicular acetylcholine transporter binding in selected cortical brain regions. In aged transgenic mice GABA(A), NMDA, AMPA, kainate, and beta-adrenergic as well 5-HT(1A)- and 5-HT(2A)-receptor binding levels were hardly affected, whereas alpha(1)- and alpha(2)-adrenoceptor binding was increased in selected cerebral cortical regions as compared to non-transgenic littermates. The development of changes in both cholinergic and non-cholinergic markers in transgenic Tg2576 mouse brain already before the onset of progressive plaque deposition provides in vivo evidence of a modulatory role of soluble beta-amyloid on cortical neurotransmission and may be referred to the deficits in learning and memory observed in these mice also before significant plaque load.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2003.08.001DOI Listing

Publication Analysis

Top Keywords

plaque load
16
cholinergic non-cholinergic
12
transgenic tg2576
12
transgenic mice
12
tg2576 mouse
8
mouse brain
8
plaque
8
beta-amyloid plaque
8
plaque pathology
8
non-cholinergic markers
8

Similar Publications

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Background And Objectives: Previous research has demonstrated increased brain amyloid plaque load in individuals with childhood-onset epilepsy in late middle age. However, the trajectory of this process is not yet known. The aim of this study was to determine whether individuals with a history of childhood-onset epilepsy show progressive brain aging in amyloid accumulation in late adulthood (Turku Adult Childhood-Onset Epilepsy study, TACOE).

View Article and Find Full Text PDF

Background: Soluble species of multimeric amyloid-beta including globular amyloid-beta oligomers (AβOs) and linear amyloid-beta protofibrils are toxic to neurons. Sabirnetug (ACU193) is a humanized monoclonal antibody, raised against globular species of soluble AβO, that has over 650-fold greater binding affinity for AβOs over monomers and appears to have relatively little binding to amyloid plaque.

Objectives: To assess safety, pharmacokinetics, and exploratory measures including target engagement, biomarker effects, and clinical efficacy of sabirnetug in participants with early symptomatic Alzheimer's disease (AD; defined as mild cognitive impairment and mild dementia due to AD).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) can be diagnosed by in vivo abnormalities of amyloid-β plaques (A) and tau accumulation (T) biomarkers. Previous studies have shown that analyses of serial position performance in episodic memory tests, and especially, delayed primacy, are associated with AD pathology even in individuals who are cognitively unimpaired. The earliest signs of cortical tau pathology are observed in medial temporal lobe (MTL) regions, yet it is unknown if serial position markers are also associated with early tau load in these regions.

View Article and Find Full Text PDF

Olfactory dysfunction (OD) is an underestimated symptom in multiple sclerosis (MS). Multiple factors may play a role in the OD reported by MS patients, such as ongoing inflammation in the central nervous system (CNS), damage to the olfactory bulbs due to demyelination, and the presence of plaques in brain areas associated with the olfactory system. Indeed, neuroimaging studies in MS have shown a clear association of the OD with the number and activity of MS-related plaques in frontal and temporal brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!