One of the principal promises of solid-state NMR (SSNMR) magic angle spinning (MAS) experiments has been the possibility of determining the structures of molecules in states that are not accessible via X-ray or solution NMR experiments-e.g., membrane or amyloid proteins. However, the low sensitivity of SSNMR often restricts structural studies to small-model compounds and precludes many higher-dimensional solid-state MAS experiments on such systems. To address the sensitivity problem, we have developed experiments that utilize dynamic nuclear polarization (DNP) to enhance sensitivity. In this communication, we report the successful application of MAS DNP to samples of cryoprotected soluble and membrane proteins. In particular, we have observed DNP signal enhancements of up to 50 in 15N MAS spectra of bacteriorhodopsin (bR) and alpha-lytic protease (alpha-LP). The spectra were recorded at approximately 90 K where MAS is experimentally straightforward, and the results suggest that the described protocol will be widely applicable.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja036898kDOI Listing

Publication Analysis

Top Keywords

dynamic nuclear
8
nuclear polarization
8
mas spectra
8
mas experiments
8
mas
6
high-frequency dynamic
4
polarization mas
4
spectra membrane
4
membrane soluble
4
soluble proteins
4

Similar Publications

The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.

View Article and Find Full Text PDF

We report nonadiabatic dynamics computations on CH initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions.

View Article and Find Full Text PDF

(Fragile X messenger ribonucleoprotein 1), located on the X-chromosome, encodes the multi-functional FMR1 protein (FMRP), critical to brain development and function. Trinucleotide CGG repeat expansions at this locus cause a range of neurological disorders, collectively referred to as Fragile X-related conditions. The most well-known of these is Fragile X syndrome, a neurodevelopmental disorder associated with syndromic facial features, autism, intellectual disabilities, and seizures.

View Article and Find Full Text PDF

Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the gene family in remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 genes within the genome, revealing their uneven distribution across chromosomes.

View Article and Find Full Text PDF
Article Synopsis
  • A magnesium-aluminum layered double hydroxide (LDH) was created using a coprecipitation technique from a nitrate solution and transformed into a layered double oxide (LDO) after being heated to 450 °C.
  • During rehydration in a fluoride solution, the LDH's original structure was restored and fluoride ions were absorbed to maintain balance, a finding confirmed by energy-dispersive X-ray spectroscopy (EDS).
  • The study demonstrated that using ethanol during the rehydration process significantly increased fluoride incorporation, and the fluoride release pattern from the material revealed a rapid initial release followed by a slower, prolonged release.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!