Regulation of the neuronal actin cytoskeleton by ADF/cofilin.

J Neurobiol

Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado 80523, USA.

Published: January 2004

Actin and microtubules are major cytoskeletal elements of most cells including neurons. In order for a cell to move and change shape, its cytoskeleton must undergo rearrangements that involve breaking down and reforming filaments. Many recent reviews have focused on the signaling pathways emanating from receptors that ultimately affect axon growth and growth cone steering. This particular review will address changes in the actin cytoskeleton modulated by the family of actin dynamizing proteins known as actin depolymerizing factor (ADF)/cofilin or AC proteins. Though much is known about inactivation of AC proteins through phosphorylation at ser3 by LIM or TES kinases, new mechanisms of regulation of AC have recently emerged. A novel phosphatase, slingshot (SSH), and the 14-3-3 family of regulatory proteins have also been found to affect AC activity. The potential role of AC proteins in modulating the actin organizational changes that accompany neurite initiation, axonogenesis, growth cone guidance, and dendritic spine formation will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/neu.10267DOI Listing

Publication Analysis

Top Keywords

actin cytoskeleton
8
growth cone
8
actin
6
proteins
5
regulation neuronal
4
neuronal actin
4
cytoskeleton adf/cofilin
4
adf/cofilin actin
4
actin microtubules
4
microtubules major
4

Similar Publications

Tension-induced organelle stress: an emerging target in fibrosis.

Trends Pharmacol Sci

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.

Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma.

View Article and Find Full Text PDF

Irritable bowel syndrome (IBS) is a multifactorial condition with heterogeneous pathophysiology, including intestinal permeability alterations. The aim of the present study was to assess the ability of a probiotic blend (PB) consisting of two strains (CECT7484 and CECT7485) and one strain of (CECT7483) to recover the permeability increase induced by mediators from IBS mucosal biopsies and to highlight the underlying molecular mechanisms. Twenty-one IBS patients diagnosed according to ROME IV criteria (11 IBS-D and 10 IBS-M) and 7 healthy controls were enrolled.

View Article and Find Full Text PDF

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

A variety of potential biological roles of mechanical forces have been proposed in the field of cell biology. In particular, mechanical forces alter the mechanical conditions within cells and their environment, exerting a strong effect on the reorganization of the actin cytoskeleton. Single-molecule imaging studies have provided evidence that an actin filament may act as a mechanosensor.

View Article and Find Full Text PDF

Assays of Platelet SNARE-actin Interactions.

Methods Mol Biol

January 2025

Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.

The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!